Clinical Trials Logo

Clinical Trial Summary

This study will examine blood for factors that may cause or prevent diseases involving iron or red blood cells. Iron is an important nutrient for human health that is needed to produce red blood cells. Red blood cells carry oxygen to body tissues. A better understanding of iron and red blood cells may help lead to better treatment of several diseases including anemia.

Patients of all ages with red cell abnormalities in the following categories may be eligible for this study:

- Diseases with deficiency, overload or maldistribution of iron

- Known red blood cell diseases, such as anemias and hemoglobinopathies

- Red blood cell diseases of unknown cause, such as hemolysis of unknown cause

- Red blood cell abnormalities with no overt clinical disease, such as hereditary persistence of fetal hemoglobin

Participants undergo the following procedures:

- Medical history

- Physical examination

- Standard medical tests related to the individual's iron or red blood cell condition

Blood draw for the following purposes:

- Testing for syphilis and for the hepatitis B and C, HIV, and HTLV-1viruses, and for a pregnancy test for women who can become pregnant

- Research purposes. This blood is analyzed for genes, proteins, sugars, and fat molecules.


Clinical Trial Description

Studies of iron and erythroid cells, have provided fundamental insights into structure function relationships of proteins, energy metabolism, and the molecular basis of many diseases. Based upon the importance of iron for hemoglobin production, the regulation of erythropoiesis and iron metabolism are closely linked, and iron deficiency anemia remains as one of the most common diseases worldwide. The discovery of sickle hemoglobin as having an abnormal electrophoretic mobility marked the beginning of the molecular medicine era. The advent of recombinant DNA technology and sequencing methodologies resulted in the characterization of erythroid cells well beyond that of protein based studies to include gene structure and expression. Globin gene research, in particular, has provided a wealth of information about the expression, regulation and insulation of mammalian genes. More recently, studies of iron absorption and trafficking provided new avenues of research aimed toward growth and energy homeostasis. Genome based approaches were also utilized for the discovery of direct relationships between erythroid cell biology and iron homeostasis. Hence, there is strong evidence that fundamental clinical advances in the field of iron and erythroid biology have been based upon the careful study of humans with informative phenotypes. Clinically based correlation of genotype and phenotype is a proven, systematic approach for understanding the molecular basis of disease.

With the completion of the sequencing of the human genome, a more complete, genetically based description of disease is now achievable. Efforts aimed toward haplotype mapping will further enhance genotype phenotype correlation directly from clinical samples. Considerable progress has already been made in this regard using normal human erythroid cells. In contrast to classic studies involving single genes or proteins, computational biology and high throughput technologies permit the analysis of complex erythroid phenotypes including those with related iron pathologies. This information will be invaluable for understanding those molecular mechanisms that are altered in disease states.

The immediate aim of this protocol is to perform phenotypic analyses in humans with informative iron or erythroid phenotypes. These studies are expected to result in detailed clinical phenotyping and the collection and banking of clinical specimens for further study. In addition, we predict an ongoing growth of new technologies that may eventually be used for molecular and genetic phenotyping of clinical samples (examples include oligonucleotide chips and high throughput mass spectroscopy). Based upon this prediction, we plan to use the samples collected here to assess possible clinical uses of those technologies as they become available. The eventual aim is the discovery of identifiers that may be predictive of disease pathogenesis, severity or clinical response to intervention. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT00102245
Study type Observational
Source National Institutes of Health Clinical Center (CC)
Contact
Status Terminated
Phase N/A
Start date January 18, 2005
Completion date August 4, 2017

See also
  Status Clinical Trial Phase
Terminated NCT00034528 - Stem Cell Transplantation After Reduced-Dose Chemotherapy for Patients With Sickle Cell Disease or Thalassemia Phase 2
Active, not recruiting NCT03655678 - A Safety and Efficacy Study Evaluating CTX001 in Subjects With Transfusion-Dependent β-Thalassemia Phase 2/Phase 3
Completed NCT03609827 - Study of Melphalan Drug Exposure in Pediatric Hematopoietic Stem Cell Transplant Patients
Recruiting NCT06107400 - Safety and Efficacy of RM-004 Cells for Hemoglobin H-Constant Spring Disease Early Phase 1
Enrolling by invitation NCT02986698 - In Utero Hematopoietic Stem Cell Transplantation for Alpha-thalassemia Major (ATM) Phase 1
Completed NCT00744692 - Reduced Intensity Conditioning for Umbilical Cord Blood Transplant in Pediatric Patients With Non-Malignant Disorders Phase 1
Recruiting NCT05799118 - Study of the Role of Genetic Modifiers in Hemoglobinopathies
Active, not recruiting NCT03745287 - A Safety and Efficacy Study Evaluating CTX001 in Subjects With Severe Sickle Cell Disease Phase 2/Phase 3
Completed NCT00673608 - Magnetic Resonance Imaging (MRI) Assessments of the Heart and Liver Iron Load in Patients With Transfusion Induced Iron Overload Phase 4
Recruiting NCT04644016 - Cord Blood Transplant in Children and Young Adults With Blood Cancers and Non-malignant Disorders Phase 2
Recruiting NCT04853576 - A Study Evaluating the Safety and Efficacy of EDIT-301 in Participants With Severe Sickle Cell Disease (RUBY) Phase 1/Phase 2
Recruiting NCT05356195 - Evaluation of Safety and Efficacy of CTX001 in Pediatric Participants With Transfusion-Dependent β-Thalassemia (TDT) Phase 3
Completed NCT03609840 - Study of Thiotepa and TEPA Drug Exposure in Pediatric Hematopoietic Stem Cell Transplant Patients
Active, not recruiting NCT01850108 - Non-Myeloablative Conditioning and Bone Marrow Transplantation N/A
Recruiting NCT05329649 - Evaluation of Safety and Efficacy of CTX001 in Pediatric Participants With Severe Sickle Cell Disease (SCD) Phase 3
Active, not recruiting NCT01966367 - CD34+ (Non-Malignant) Stem Cell Selection for Patients Receiving Allogeneic Stem Cell Transplantation Phase 1/Phase 2
Completed NCT00153985 - Allogeneic Stem Cell Transplantation Following Chemotherapy in Patients With Hemoglobinopathies Phase 2
Recruiting NCT03128996 - Reduced Intensity Conditioning and Familial HLA-Mismatched BMT for Non-Malignant Disorders Phase 1/Phase 2
Completed NCT03149289 - Hepatitis C Virus Infection in Patients With Hemoglobinopathies N/A
Completed NCT00000588 - Chelation Therapy of Iron Overload With Pyridoxal Isonicotinoyl Hydrazone Phase 2