Heart Failure, Systolic Clinical Trial
Official title:
The Effect of Ferric Carboximaltose on Intra-myocardial Iron Load Assessed by Cardiac Magnetic Resonance in Patients With Heart Failure With Reduced Ejection Fraction (HFREF).
In general, anemia is associated with a greater presence of HF symptoms, worsening NYHA
functional class, higher rate of hospitalization for heart failure, and reduced survival.
However, it is unclear whether anemia is the cause of decreased survival or a marker for more
advanced disease. Correction of iron deficiency in patients with New York Heart Association
(NYHA) class II or III HF using intravenous iron (Ferinject®) improved "overall patient
self-assessment" and NYHA functional class of 6-minute walk and health-related quality of
life) in the FAIR-HF trial.
It is unknown if iron deficiency is correlated with intra-myocardial iron load as assessed by
cardiac magnetic resonance (CMR) and if the treatment with intravenous iron has any impact on
intra-myocardial iron load and left ventricular function.
The aim of the present study is to evaluate the effect of intravenous iron replacement on
intra-myocardial iron deposits and the effect on left ventricular function.
Because it is a pilot study with few data in the literature, it is planned to use an initial
sample of 20 patients.
We aim to evaluate the global ventricular function, the iron load by the T2 * method, the
cardiac strain, the "Fiddle" and the "Fat water" of each patient by CMR. After this
examination, patients will undergo intravenous infusion of 1g of Ferric Carboxymaltose
(Ferinject®).
A comparative analysis of the ejection fraction values at the beginning and at the end of the
study by CMR will be performed, in addition to a clinical reassessment.
The inclusion criteria will be: Patients older than 18 years, with iron deficiency and
reduced ejection fraction defined as: serum ferritin <100 μg / L or with ferritin 100-299 μg
/ L with transferrin saturation <20 %; Hemoglobin <12g / dL in women and <13g / dL in men;
Clinical stability in the last 3 months; Left ventricular ejection fraction (LVEF) <40%
assessed by transthoracic echocardiography or CMR in the last 3 months. The exclusion
criteria will be: patients with preserved ejection fraction (> 50%), pregnant women, refusal
to participate in the present study, implantable pacemaker or implantable defibrillator
incompatible with MRI, cerebral cerebral aneurysm clip and/or intracerebral or intraocular
metal fragments, electronic cochlear implants, patients with claustrophobia, patients with
clinical or hemodynamic instability and patients with indication for blood transfusion (Hb ≤
7g / dL).
Anemia (defined as a hemoglobin concentration below 13 g / dL in men and less than 12 g / dL
in women) is a condition frequently associated with heart failure (HF), and its prevalence is
estimated at around 4% to 50 %, depending on the study population and the adopted definition.
In general, anemia is associated with a greater presence of HF symptoms, worsening NYHA
functional class, higher rate of hospitalization for heart failure, and reduced survival.
However, it is unclear whether anemia is the cause of decreased survival or a marker for more
advanced disease.
The etiology of anemia is multifactorial, including reduced sensitivity to erythropoietin
receptors, presence of a hematopoiesis inhibitor and / or a defective iron supply for
erythropoiesis. There is growing evidence that iron availability may be reduced absolutely
due to decreased enteral iron absorption and / or occult hemorrhage, as well as in relative
form, resulting from the dysregulation of iron homeostasis and accumulation of iron in cells
of the reticuloendothelial system, characteristic of chronic disease anemia.
Recently, it has been suggested that iron deficiency itself may be an independent predictor
of outcome in HF.
Correction of iron deficiency in patients with New York Heart Association (NYHA) class II or
III HF using intravenous iron (Ferinject®) improved "overall patient self-assessment" and
NYHA functional class of 6-minute walk and health-related quality of life) in the FAIR-HF
trial. The treatment of patients with heart failure with mild to moderate anemia (hemoglobin
levels from 9.0 to 12.0 g / dL) with the erythropoietin analogue, darbepoetin alfa was
evaluated in the RED-HF trial (Reduction of Events with Darbepoetin Alfa in Heart Failure).
No differences in the primary end point of death from any cause or hospitalization due to HF,
or in the secondary outcome of cardiovascular death or time until the first hospitalization
due to HF. The absence of darbepoetin was consistent across all subgroups. Of relevant,
treatment with darbepoetin alfa led to an early increase (within one month) and sustained in
the hemoglobin level throughout the study. These RED-HF trial results suggest that the level
of hemoglobin, as well as other sub- stantial outcomes in HF, may be a prognostic marker,
with decreased levels correlated with a worse prognosis, rather than a therapeutic target of
HF.
A 2009 study tested the hypothesis of the association between anemia and HF severity, and the
outcome could be explained by the emptying of iron stores, particularly at the myocardium
level. This concept is based on previous experimental work showing that iron deficiency is
associated with progressive left ventricular dysfunction and cardiac fibrosis.
Although serum ferritin is clinically used to estimate body iron stores, it reports
approximately 1% of the total iron storage pool and its measurement can be confounded by a
number of conditions, such as inflammation, abnormal liver function, and ascorbic acid
deficiency. In contrast to serum ferritin, hepatic iron may serve as a better indicator of
serum iron; however, it does not reflect myocardial iron. Cardiac iron overload and related
toxicity may occur despite low hepatic iron concentrations.
Measurement of cardiac iron represented a major challenge to society. Endomyocardial biopsy
is highly risky and potentially imprecise due to the small sample size and the heterogeneous
deposition of cardiac iron. The introduction of cardiac magnetic resonance imaging (CMR)
provided a reliable measure of tissue iron and revolutionized our understanding and
management of iron-induced cardiomyopathy.
Iron, because is paramagnetic, can be quantified by Magnetic Resonance (MRI) in both the
liver and the heart through a method called T2 * (T2 "star"). Myocardial iron deposition can
be detected using myocardial T2 * and is the most important variable for predicting a need
for treatment for ventricular dysfunction in the context of iron overload (eg,
polytransfusion).
The clinically important iron load is defined as T2 * with values less than 20 ms, and is
considered serious if it is less than 10 ms.
In 2016, a study in Spain evaluated patients with heart failure (with or without anemia) and
their response to intravenous iron infusion. These patients, initially with mean T2* values
of 39.5 msec, were followed by Cardiac Magnetic Resonance (CMR) before and after iron
replacement with Ferric Carboxymaltose (Ferinject®) , obtaining at the end of the study,
improvement in ventricular function and increase in the myocardial iron load (T2 * mean of 32
msec ).
The aim of the present study was to evaluate the correlation between intravenous iron
replacement and increased intra-myocardial iron deposits and their effect on ventricular
function.
In the CMR, the global ventricular function, the iron load by the "T2 * method", the cardiac
"Strain" and the "Fat Water" of each patient will be analyzed. After this examination,
patients will undergo intravenous 1g of Ferric Carboxymaltose (Ferinject®).
A comparative analysis of the ejection fraction values at the beginning and at the end of the
study by CMR will be performed, in addition to a clinical reassessment, in which improvement
of dyspnea and tiredness are expected.
There will be laboratory reassessment of ferritin and transferrin saturation to monitor
treatment.
;
Status | Clinical Trial | Phase | |
---|---|---|---|
Withdrawn |
NCT03227393 -
The Effect of Yoga on Cardiac Sympathetic Innervation Evaluated by I-123 mIBG
|
N/A | |
Recruiting |
NCT04528004 -
Mechanistic Studies of Nicotinamide Riboside in Human Heart Failure
|
Early Phase 1 | |
Recruiting |
NCT04703842 -
Modulation of SERCA2a of Intra-myocytic Calcium Trafficking in Heart Failure With Reduced Ejection Fraction
|
Phase 1/Phase 2 | |
Recruiting |
NCT04522609 -
Electrostimulation of Skeletal Muscles in Patients Listed for a Heart Transplant
|
N/A | |
Completed |
NCT05475028 -
Network Medicine Approaches to Classify Heart Failure With PReserved Ejection Fraction by Signatures of DNA Methylation and Point-of-carE Risk calculaTors (PRESMET)
|
||
Not yet recruiting |
NCT06240403 -
Digoxin and Senolysis in Heart Failure and Diabetes Mellitus
|
Phase 2 | |
Not yet recruiting |
NCT05988749 -
Digital Remote Home Monitoring for Heart Failure
|
N/A | |
Recruiting |
NCT04950218 -
The Psoriasis Echo Study
|
||
Suspended |
NCT04701112 -
Acute Hemodynamic Effects of Pacing the His Bundle in Heart Failure
|
N/A | |
Completed |
NCT03305692 -
ECG Belt vs. Echocardiographic Optimization of CRT
|
N/A | |
Recruiting |
NCT05933083 -
MCNAIR Study: coMparative effeCtiveness of iN-person and teleheAlth cardIac Rehabilitation
|
N/A | |
Enrolling by invitation |
NCT03903107 -
The Fluoroless-CSP Trial Using Electroanatomic Mapping
|
N/A | |
Withdrawn |
NCT04872959 -
TRANSFORM Heart Failure With Reduced Ejection Fraction
|
N/A | |
Completed |
NCT02920918 -
Treatment of Diabetes in Patients With Systolic Heart Failure
|
Phase 4 | |
Completed |
NCT02334891 -
Kyoto Congestive Heart Failure Study
|
||
Recruiting |
NCT03553303 -
Pharmacodynamic Effects of Sacubitril/Valsartan on Natriuretic Peptides, Angiotensin and Neprilysin
|
Phase 4 | |
Recruiting |
NCT04083690 -
Multi-lead ECG to Effectively Optimize Resynchronization Devices: New CRT Recipients
|
N/A | |
Recruiting |
NCT03830957 -
Efficacy and Safety of Ivabradine to Reduce Heart Rate Prior to Coronary CT-angiography in Advanced Heart Failure: Comparison With β-Blocker
|
N/A | |
Recruiting |
NCT06121323 -
Physiological Effects of Lactate in Individuals With Chronic Heart Failure
|
N/A | |
Completed |
NCT03351283 -
Effect of Sodium Intake on Brain Natriuretic Peptide Levels in Patients With Heart Failure
|
N/A |