Healthy Clinical Trial
Official title:
Lateral Prefrontal Organization in Emotion: Representational and Causal Mechanism - Duration Difference Estimation
To support optimal behavior in daily life, goals and responses following emotional events should ideally incorporate not only the valence and intensity of prior emotional episodes but also their temporal features, such as the relative duration of positive vs. negative attributes. However, how specific brain regions contribute to the integration of temporal and emotional information and promote goal-directed response remains unknown. The goal of this study is to examine how specific brain regions track both emotional and temporal information of dynamic emotional events to inform other related brain regions to guide goal-oriented and context-appropriate actions. The investigators will scan healthy human participants using functional MRI (fMRI) while they view emotional image sequences and track the associated emotional and temporal (duration) information, and act accordingly. The investigators will employ multivariate patterns analysis and pattern similarity analysis to identify brain regions that represent (can decode) emotion, time, and their combined signals, as well as brain regions that represent the associated action goal. In addition, to infer the causal contributions of these brain regions in forming task-relevant representations (emotion, time, and action goal), the same participants will be recruited to receive transcranial magnetic stimulation (TMS) in these regions.
Status | Recruiting |
Enrollment | 50 |
Est. completion date | March 31, 2028 |
Est. primary completion date | March 31, 2028 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 45 Years |
Eligibility | Inclusion Criteria: - right-handed - between the ages of 18 and 45 - be a fluent English speaker - have normal to corrected-to-normal vision. Exclusion Criteria: - if they report a current or prior diagnosis of a psychiatric disorder requiring hospitalization and/or are currently using psychiatric medication; o If they report a history of or current neurological disease (i.e., stroke, concussion, epilepsy, major head trauma, complicated migraine); - If they ever had a seizure; - If they have a family history of epilepsy or seizure disorders; - If they have a history of fainting; - If they are sleep deprived (TMS only); - If they have a history of prior surgery with metal clips, implants, devices, prosthetics, cardiac or neural implants (e.g., pacemaker; neurostimulator), or cochlear implants; - If they are unable to safely and comfortably complete an MRI: have metal in the body, recent surgery, presence of surgically implanted devices not cleared for MRI, extreme claustrophobia, if they report tattoos of the head or neck region, non-removable metal piercing anywhere on the body - Women will be asked to self-report their pregnancy status and have the option to take a pregnancy test if they wish. If there is a chance a participant is pregnant, they will not be scanned. - As part of the newly adopted UCSB BIC prescreening procedure, participants will be asked about their history of hearing issues (including loss, hyperacuity, sensitivity to loud noises, history of tinnitus (ringing in ears), job with high noise exposure, and chronic migraines. Participants will be excluded if one or more hearing issues are reported. |
Country | Name | City | State |
---|---|---|---|
United States | University of California, Santa Barbara | Santa Barbara | California |
Lead Sponsor | Collaborator |
---|---|
University of California, Santa Barbara |
United States,
Badre D, Bhandari A, Keglovits H, Kikumoto A. The dimensionality of neural representations for control. Curr Opin Behav Sci. 2021 Apr;38:20-28. doi: 10.1016/j.cobeha.2020.07.002. Epub 2020 Aug 19. — View Citation
Bates D, Ma¨chler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, Articles. 2015;67(1):1-48.
Freund MC, Etzel JA, Braver TS. Neural Coding of Cognitive Control: The Representational Similarity Analysis Approach. Trends Cogn Sci. 2021 Jul;25(7):622-638. doi: 10.1016/j.tics.2021.03.011. Epub 2021 Apr 21. — View Citation
Lapate RC, Ballard IC, Heckner MK, D'Esposito M. Emotional Context Sculpts Action Goal Representations in the Lateral Frontal Pole. J Neurosci. 2022 Feb 23;42(8):1529-1541. doi: 10.1523/JNEUROSCI.1522-21.2021. Epub 2021 Dec 30. — View Citation
Lapate RC, Heckner MK, Phan A, Tambini A, D'Esposito M. Representation-based TMS to prefrontal cortex changes action goals and avoidance behavior during negative emotional processing. under review
Lapate RC, Rokers B, Tromp DP, Orfali NS, Oler JA, Doran ST, Adluru N, Alexander AL, Davidson RJ. Awareness of Emotional Stimuli Determines the Behavioral Consequences of Amygdala Activation and Amygdala-Prefrontal Connectivity. Sci Rep. 2016 May 16;6:25826. doi: 10.1038/srep25826. — View Citation
Lapate RC, Samaha J, Rokers B, Hamzah H, Postle BR, Davidson RJ. Inhibition of Lateral Prefrontal Cortex Produces Emotionally Biased First Impressions: A Transcranial Magnetic Stimulation and Electroencephalography Study. Psychol Sci. 2017 Jul;28(7):942-953. doi: 10.1177/0956797617699837. Epub 2017 Jun 14. — View Citation
Lapate RC, Samaha J, Rokers B, Postle BR, Davidson RJ. Perceptual metacognition of human faces is causally supported by function of the lateral prefrontal cortex. Commun Biol. 2020 Jul 9;3(1):360. doi: 10.1038/s42003-020-1049-3. — View Citation
Lowe CJ, Manocchio F, Safati AB, Hall PA. The effects of theta burst stimulation (TBS) targeting the prefrontal cortex on executive functioning: A systematic review and meta-analysis. Neuropsychologia. 2018 Mar;111:344-359. doi: 10.1016/j.neuropsychologia.2018.02.004. Epub 2018 Feb 10. — View Citation
Mumford JA, Turner BO, Ashby FG, Poldrack RA. Deconvolving BOLD activation in event-related designs for multivoxel pattern classification analyses. Neuroimage. 2012 Feb 1;59(3):2636-43. doi: 10.1016/j.neuroimage.2011.08.076. Epub 2011 Sep 5. — View Citation
Nee DE, D'Esposito M. The hierarchical organization of the lateral prefrontal cortex. Elife. 2016 Mar 21;5:e12112. doi: 10.7554/eLife.12112. — View Citation
Nee DE. Integrative frontal-parietal dynamics supporting cognitive control. Elife. 2021 Mar 2;10:e57244. doi: 10.7554/eLife.57244. — View Citation
Neubert FX, Mars RB, Thomas AG, Sallet J, Rushworth MF. Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron. 2014 Feb 5;81(3):700-13. doi: 10.1016/j.neuron.2013.11.012. Epub 2014 Jan 28. — View Citation
Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012 Jul 16;61(4):1402-18. doi: 10.1016/j.neuroimage.2012.02.084. Epub 2012 Mar 10. — View Citation
Rose NS, LaRocque JJ, Riggall AC, Gosseries O, Starrett MJ, Meyering EE, Postle BR. Reactivation of latent working memories with transcranial magnetic stimulation. Science. 2016 Dec 2;354(6316):1136-1139. doi: 10.1126/science.aah7011. — View Citation
Sallet J, Mars RB, Noonan MP, Neubert FX, Jbabdi S, O'Reilly JX, Filippini N, Thomas AG, Rushworth MF. The organization of dorsal frontal cortex in humans and macaques. J Neurosci. 2013 Jul 24;33(30):12255-74. doi: 10.1523/JNEUROSCI.5108-12.2013. — View Citation
Spielberger CD, Sydeman SJ, Owen AE, Marsh BJ. Measuring anxiety and anger with the State-Trait Anxiety Inventory (STAI) and the State-Trait Anger Expression Inventory (STAXI). The use of psychological testing for treatment planning and outcomes assessment, 2nd ed. 1507;2(1999):993-1021.
Tambini A, D'Esposito M. Causal Contribution of Awake Post-encoding Processes to Episodic Memory Consolidation. Curr Biol. 2020 Sep 21;30(18):3533-3543.e7. doi: 10.1016/j.cub.2020.06.063. Epub 2020 Jul 30. — View Citation
Tambini A, Nee DE, D'Esposito M. Hippocampal-targeted Theta-burst Stimulation Enhances Associative Memory Formation. J Cogn Neurosci. 2018 Oct;30(10):1452-1472. doi: 10.1162/jocn_a_01300. Epub 2018 Jun 19. — View Citation
Tyszka JM, Pauli WM. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template. Hum Brain Mapp. 2016 Nov;37(11):3979-3998. doi: 10.1002/hbm.23289. — View Citation
Verhagen L. Prefrontal Consensus Atlas (Oxford) [Internet]. 2018. Available from: http://lennartverhagen.com/; lennart.verhagen@donders.ru.nl
Walther A, Nili H, Ejaz N, Alink A, Kriegeskorte N, Diedrichsen J. Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage. 2016 Aug 15;137:188-200. doi: 10.1016/j.neuroimage.2015.12.012. Epub 2015 Dec 18. — View Citation
Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988 Jun;54(6):1063-70. doi: 10.1037//0022-3514.54.6.1063. — View Citation
* Note: There are 23 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Multivariate BOLD metrics | The investigators will use BOLD activation patterns measured from each ROI to fit quantitative models of emotional valence, time, and action goal encoding. These models will be used to classify stimulus representations on experimental trials to quantify how stimulus representations are encoded in each brain region studies, and how these representations change across experimental manipulations. These measurements will be used to test the impact of stimulus manipulations on stimulus representations in different brain regions. | Through study completion, an average of 12-14 months | |
Primary | Behavioral response | On all trials participants will be instructed to attend carefully to report which valence of emotional images shown for a longer duration by pressing one of two buttons held in their hand inside the scanner. The correct button to be pressed is determined by the valence, the presentation duration, and the color of a triangle (the contextual cue). Investigators will ensure participants are performing the task as instructed by providing practices and assessing the accuracy of their behavioral responses. | Through study completion, an average of 12-14 months |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06052553 -
A Study of TopSpin360 Training Device
|
N/A | |
Completed |
NCT05511077 -
Biomarkers of Oat Product Intake: The BiOAT Marker Study
|
N/A | |
Recruiting |
NCT04632485 -
Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
|
||
Completed |
NCT05931237 -
Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults
|
N/A | |
Terminated |
NCT04556032 -
Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women
|
N/A | |
Completed |
NCT04527718 -
Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers
|
Phase 1 | |
Completed |
NCT04107441 -
AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects
|
Phase 1 | |
Completed |
NCT04065295 -
A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225
|
Phase 1 | |
Completed |
NCT04998695 -
Health Effects of Consuming Olive Pomace Oil
|
N/A | |
Completed |
NCT01442831 -
Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects
|
Phase 1 | |
Terminated |
NCT05934942 -
A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood
|
Phase 1 | |
Recruiting |
NCT05525845 -
Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI
|
N/A | |
Completed |
NCT05515328 -
A Study in Healthy Men to Test How BI 685509 is Processed in the Body
|
Phase 1 | |
Completed |
NCT04967157 -
Cognitive Effects of Citicoline on Attention in Healthy Men and Women
|
N/A | |
Completed |
NCT05030857 -
Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects
|
Phase 1 | |
Recruiting |
NCT04714294 -
Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers
|
Phase 1 | |
Recruiting |
NCT04494269 -
A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls
|
Phase 1 | |
Completed |
NCT04539756 -
Writing Activities and Emotions
|
N/A | |
Recruiting |
NCT04098510 -
Concentration of MitoQ in Human Skeletal Muscle
|
N/A | |
Completed |
NCT03308110 -
Bioavailability and Food Effect Study of Two Formulations of PF-06650833
|
Phase 1 |