Clinical Trials Logo

Clinical Trial Summary

The primary purpose of this research study is to determine if forces within carbon fiber custom dynamic orthoses (CDOs) can be reliability assessed using Loadpad and Loadsol force measuring sensors (Novel GMBH, St. Paul, MN). An improved understanding of the forces acting within orthoses may help to guide future orthosis related research studies, provision methods, and patient education. Study participants will consist of healthy, able-bodied adult participants using generic sized CDOs, which consist of a proximal cuff that wraps around the leg just below the knee, a posterior carbon fiber strut that runs the length of the leg and bends to store and return energy, and a semi-rigid footplate that acts as a lever arm to bend the posterior strut. Participants will be asked to fasten the proximal cuff to a self-selected cuff tightness 'SSCT', as well as three different predefined force levels; 'Loose' where the proximal cuff is loosely fastened around the participants leg, 'Moderate' where the proximal cuff is fastened with moderate tightness, and 'Tight' where the proximal cuff is tightly fastened around the participants leg. Forces acting on the leg, within the proximal cuff, will be measured using wireless Loadpad sensors and forces acting on the foot will be measured using wireless Loadsol insoles. Testing will include collection of force data as participants sit quietly, stand quietly, and walk and completion of questionnaires. Testing in the predetermined force levels (Loose, Moderate, Tight) will occur in a randomized order.


Clinical Trial Description

Ankle foot orthoses (AFOs) are medical devices often used to support the foot and ankle during daily activities. Carbon fiber custom dynamic orthoses (CDOs), one subset of AFOs, that consist of a proximal cuff that wraps around the leg just below the knee, a posterior carbon fiber strut that runs the length of the leg and bends to store and return energy during gait, a semi-rigid carbon fiber footplate that acts as a lever arm to bend the posterior strut, and in some cases a foam heel wedge placed between the footplate and the shoe. Different CDO design characteristics, such as posterior strut stiffness, device alignment, and heel cushion height and stiffness have been studied in the past. While different design characteristics have been studied previously, there is little information available concerning the proximal cuff and how it impacts patient outcomes. Different types of AFOs and CDOs have been used in an effort to offload the limb for years. Both CDOs and patellar tendon bearing (PTB) style AFOs have been shown to reduce forces acting on the plantar surface of the foot. While multiple studies have indicated the importance of fastening the proximal cuff, few have actually investigated the forces acting within the proximal cuff. A loose proximal cuff has been associated with pistoning of the limb, where the limb translates down within the proximal cuff during loading, potentially increasing forces acting on the foot and reducing the offloading effects of the orthosis. Only one study investigated the effects of altering forces within the proximal cuff by adding more padding to the proximal cuff, which was shown to improve limb offloading. A better understanding of the forces acting within the proximal cuff, and how these effect patient outcomes would help to guide future AFO related research studies, provision, and patient education. At this point in time there is little guidance available to inform patients how tightly they need to secure the proximal cuff when wearing an AFO, many clinicians recommend tightening it so that it's secure, but not uncomfortable. The ability to measure forces within the proximal cuff and an idea of the range of forces seen in a clinical setting will act as a first step to better understanding how forces acting within the proximal cuff impact patient outcomes. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT06127264
Study type Interventional
Source University of Iowa
Contact Jason M Wilken, PT, PhD
Phone 3193356857
Email jason-wilken@uiowa.edu
Status Recruiting
Phase N/A
Start date March 1, 2024
Completion date May 2025

See also
  Status Clinical Trial Phase
Recruiting NCT06052553 - A Study of TopSpin360 Training Device N/A
Completed NCT05511077 - Biomarkers of Oat Product Intake: The BiOAT Marker Study N/A
Recruiting NCT04632485 - Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
Completed NCT05931237 - Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults N/A
Terminated NCT04556032 - Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women N/A
Completed NCT04527718 - Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers Phase 1
Completed NCT04065295 - A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225 Phase 1
Completed NCT04107441 - AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects Phase 1
Completed NCT04998695 - Health Effects of Consuming Olive Pomace Oil N/A
Completed NCT01442831 - Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects Phase 1
Terminated NCT05934942 - A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood Phase 1
Recruiting NCT05525845 - Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI N/A
Completed NCT05515328 - A Study in Healthy Men to Test How BI 685509 is Processed in the Body Phase 1
Completed NCT04967157 - Cognitive Effects of Citicoline on Attention in Healthy Men and Women N/A
Completed NCT05030857 - Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects Phase 1
Recruiting NCT04494269 - A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls Phase 1
Recruiting NCT04714294 - Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers Phase 1
Completed NCT04539756 - Writing Activities and Emotions N/A
Recruiting NCT04098510 - Concentration of MitoQ in Human Skeletal Muscle N/A
Completed NCT03308110 - Bioavailability and Food Effect Study of Two Formulations of PF-06650833 Phase 1