Healthy Clinical Trial
— Sim1gOfficial title:
Rendering of a Local 1g Environment for Enhanced Motor Learning in Altered Gravity
NCT number | NCT03978910 |
Other study ID # | 18-210 |
Secondary ID | |
Status | Recruiting |
Phase | N/A |
First received | |
Last updated | |
Start date | April 1, 2019 |
Est. completion date | May 30, 2021 |
Human motor adaptation is crucial to adapt to new environments, such as altered gravity. Dexterous manipulation and fine movements in space require learning new coordinated motor actions. Traditionally, adaptation mechanisms have been tested in laboratories with robotic devices that perturb specific task parameters unbeknownst to the participant. Over repetition, participants build a more accurate representation of the task dynamics and, eventually, improve performance. These perturbations are applied locally on the hand or limb while the dynamics of the rest of the body remains unaltered. These approaches are therefore limitative since they do not reflect ecological adaptation to globally changed dynamics, such as new gravitational environments. Parabolic flights, centrifuges and water immersion allow circumventing these limitations. Previous investigations in these contexts have highlighted the role of the global context in motor adaptation. However, it is unknown if global learning could benefit from exploiting known local dynamics. Here, we design an original task that will capture both the learning of arm movement kinematics as well as grasping forces for object manipulation in an ecologically valid design. We test whether executing this task in hypogravity with rendering of Earth gravity locally at the hand is beneficial or detrimental to task performance. By adopting the "negative picture" of conventional robotic approaches, these results will further our understanding of basic motor adaptation and provide insightful information on the optimal design and control of human-machine interfaces and wearable robots in space environments and other immersive dynamics.
Status | Recruiting |
Enrollment | 18 |
Est. completion date | May 30, 2021 |
Est. primary completion date | May 30, 2020 |
Accepts healthy volunteers | Accepts Healthy Volunteers |
Gender | All |
Age group | 18 Years to 65 Years |
Eligibility |
Inclusion Criteria: - Healthy volunteers (men or women). - Aged from 18 to 65. - Affiliated to a Social Security system and, for non-French resident, holding a European Health Insurance Card (EHIC). - Who accepted to take part in the study. - Who can take scopolamine or nautamine (medication against airsickness). - Who have given their informed written stated consent. - Who have passed a medical examination similar to a standard aviation medical examination for private pilot aptitude (JAR FCL3 Class 2 medical examination) and have been declared fit to fly. The examination must be less than one year before the experiment flight. There will be no additional test performed for participant selection. Exclusion Criteria: - Persons who took part in a previous biomedical research protocol, of which exclusion period is not terminated. - Persons with any history of cerebral, cardiovascular or vestibular diseases. - Persons with history of psychiatric diseases, including anxiety disorder. - Persons whose medical condition has changed since the class 2-like medical examination. - Pregnant women (urine pregnancy test for women of childbearing potential). |
Country | Name | City | State |
---|---|---|---|
France | Caen Univerity Hospital | Caen |
Lead Sponsor | Collaborator |
---|---|
University Hospital, Caen |
France,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | accuracy of the reaching movements | Euclidian distance between final position and target | baseline |
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT06052553 -
A Study of TopSpin360 Training Device
|
N/A | |
Completed |
NCT05511077 -
Biomarkers of Oat Product Intake: The BiOAT Marker Study
|
N/A | |
Recruiting |
NCT04632485 -
Early Detection of Vascular Dysfunction Using Biomarkers From Lagrangian Carotid Strain Imaging
|
||
Completed |
NCT05931237 -
Cranberry Flavan-3-ols Consumption and Gut Microbiota in Healthy Adults
|
N/A | |
Completed |
NCT04527718 -
Study of the Safety, Tolerability and Pharmacokinetics of 611 in Adult Healthy Volunteers
|
Phase 1 | |
Terminated |
NCT04556032 -
Effects of Ergothioneine on Cognition, Mood, and Sleep in Healthy Adult Men and Women
|
N/A | |
Completed |
NCT04998695 -
Health Effects of Consuming Olive Pomace Oil
|
N/A | |
Completed |
NCT04065295 -
A Study to Test How Well Healthy Men Tolerate Different Doses of BI 1356225
|
Phase 1 | |
Completed |
NCT04107441 -
AX-8 Drug Safety, Tolerability and Plasma Levels in Healthy Subjects
|
Phase 1 | |
Completed |
NCT01442831 -
Evaluate the Absorption, Metabolism, And Excretion Of Orally Administered [14C] TR 701 In Healthy Adult Male Subjects
|
Phase 1 | |
Terminated |
NCT05934942 -
A Study in Healthy Women to Test Whether BI 1358894 Influences the Amount of a Contraceptive in the Blood
|
Phase 1 | |
Recruiting |
NCT05525845 -
Studying the Hedonic and Homeostatic Regulation of Food Intake Using Functional MRI
|
N/A | |
Completed |
NCT05515328 -
A Study in Healthy Men to Test How BI 685509 is Processed in the Body
|
Phase 1 | |
Completed |
NCT05030857 -
Drug-drug Interaction and Food-effect Study With GLPG4716 and Midazolam in Healthy Subjects
|
Phase 1 | |
Completed |
NCT04967157 -
Cognitive Effects of Citicoline on Attention in Healthy Men and Women
|
N/A | |
Recruiting |
NCT04714294 -
Evaluate the Safety, Tolerability and Pharmacokinetics Characteristics of HPP737 in Healthy Volunteers
|
Phase 1 | |
Recruiting |
NCT04494269 -
A Study to Evaluate Pharmacokinetics and Safety of Tegoprazan in Subjects With Hepatic Impairment and Healthy Controls
|
Phase 1 | |
Completed |
NCT04539756 -
Writing Activities and Emotions
|
N/A | |
Recruiting |
NCT04098510 -
Concentration of MitoQ in Human Skeletal Muscle
|
N/A | |
Completed |
NCT03308110 -
Bioavailability and Food Effect Study of Two Formulations of PF-06650833
|
Phase 1 |