Glioma Clinical Trial
Official title:
Pilot Study of Liquid Biopsy as a Diagnostic Tool for Gliomas by Analyzing Circulating Tumor DNA in Blood Samples, and Its Validation With the Corresponding Tissue Biopsies.
The present pilot study aims to investigate a new strategy in the liquid biopsy protocol for the diagnosis of gliomas based on the detection of circulating tumor DNA in the blood of patients with brain lesions compatible with this type of tumor. In order to increase the sensitivity of the technique, the investigators will work with raw blood samples through minimally invasive procedures. The subsequent analysis will be done with digital PCR, due to its low detection limit. The mutational results of each patient's samples will be compared with those obtained from the corresponding tissue biopsies. This step will allow the team to determine the robustness and reliability of the liquid biopsy. The grading of the tumor, as well as the confirmation of the diagnosis, will be obtained from the histological data. With the inclusion of more patients in the future, and with the optimization of the mutations investigated, the investigators want to standardize the protocol for the diagnosis of gliomas with liquid biopsy. This technique is less invasive than current surgical procedures used for diagnosis. In addition, using fewer hospital resources should allow a more accurate and rapid diagnosis of the pathology, and therefore, start the more personalized therapeutic stage earlier.
Currently, brain tumors are detected by means of an imaging technique (usually magnetic resonance imaging) with a contrast agent. The determination of the type of tumor, as well as its grading, is usually done subsequently with a biopsy of the tissue, where different solid samples are extracted as representative as possible to analyze them in the Pathological Anatomy service. Nevertheless, there are some factors that limit surgical access, such as: the advanced age of the patient, the location of the tumor in eloquent or risky areas, as well as the presence of large tumors with very diffuse borders. In these cases, the diagnosis of the brain tumor is usually made directly with the magnetic resonance image, which implies a risk of error due to the lack of clinical information from this test. Limitations like these make the minimally invasive procedure of liquid biopsy an extremely necessary diagnostic tool. For this reason, the investigators want to start a pilot study of this technique in those patients with brain lesions in the resonance images compatible with a glioma-like tumor. In particular, the main aim of the study is to analyze the blood samples obtained from these patients in order to detect and quantify the circulating DNA (ctDNA) of tumor cells on it. These DNA fragments are expelled into the bloodstream by mechanisms still unknown as a result of numerous processes of apoptosis and necrosis of tumor cells. By analyzing them through a ddPCR, the investigators will try to detect the specific mutations present in this tumoral ctDNA, allowing the team to confirm the presence of a glioma-type tumor, and providing real-time information of its classification as astrocytoma or oligodendroglioma. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT04539574 -
An Investigational Scan (7T MRI) for the Imaging of Central Nervous System Tumors
|
N/A | |
Enrolling by invitation |
NCT04461002 -
Evaluation of the Correlation Between Molecular Phenotype and Radiological Signature (by PET-scanner and MRI) of Incident WHO II and III Grade Gliomas.
|
||
Terminated |
NCT01902771 -
Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors
|
Phase 1 | |
Completed |
NCT03242824 -
The Utility of 18F-DOPA-PET in the Treatment of Recurrent High-grade Glioma
|
Phase 2 | |
Recruiting |
NCT04186832 -
Step Count Monitoring as a Measure of Physical Activity in Patients With Newly Diagnosed Glioma Undergoing Radiation Therapy
|
N/A | |
Completed |
NCT00424554 -
Low-dose Temozolomide for 2 Weeks on Brain Tumor Enzyme in Patients With Gliomas (P04602 AM1) (Completed)
|
Phase 2 | |
Recruiting |
NCT05968053 -
Detection of Microplastics and Nanoplastics in Neurosurgery Patients (DT-MiNi)
|
||
Not yet recruiting |
NCT04550663 -
NKG2D CAR-T(KD-025) in the Treatment of Relapsed or Refractory NKG2DL+ Tumors
|
Phase 1 | |
Completed |
NCT02805179 -
A Study of High-Dose Chemoradiation Using Biologically-Based Target Volume Definition in Patients With Glioblastoma
|
Phase 2 | |
Terminated |
NCT04556929 -
Enhanced Detection in Glioma Excision
|
N/A | |
Not yet recruiting |
NCT06408428 -
Glioma Intraoperative MicroElectroCorticoGraphy
|
N/A | |
Recruiting |
NCT06043232 -
MMR/MSI Phenotypes in Prediction of Tumor Vaccine Benefit for Gliomas
|
||
Not yet recruiting |
NCT06043765 -
Reducing Cognitive Impairment in Glioma With Repetitive Transcranial Magnetic Stimulation and Cognitive Strategy Training
|
N/A | |
Not yet recruiting |
NCT05025969 -
Evaluation of the Incidence of NTRK Gene Fusion in Adult Brain Tumours
|
||
Completed |
NCT02978261 -
Study of a c-Met Inhibitor PLB1001 in Patients With PTPRZ1-MET Fusion Gene Positive Recurrent High-grade Gliomas
|
Phase 1 | |
Completed |
NCT01836536 -
Search for a Link Between Response to Treatment and Circulating Leucocytes in High Grade Glioma Patients
|
N/A | |
Terminated |
NCT01502605 -
Phase I Study of Orally Administered Aminolevulinic Acid for Resection of Malignant Astrocytomas
|
Phase 1 | |
Completed |
NCT01479686 -
iMRI Guided Resection in Cerebral Glioma Surgery
|
Phase 3 | |
Completed |
NCT01212731 -
Skull Base and Low Grade Glioma Neurocognitive Magnetic Resonance Imaging (MRI) Study
|
||
Terminated |
NCT01044966 -
A Study of Intraventricular Liposomal Encapsulated Ara-C (DepoCyt) in Patients With Recurrent Glioblastoma
|
Phase 1/Phase 2 |