Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT05028400
Other study ID # LSCI-NSURG
Secondary ID
Status Completed
Phase N/A
First received
Last updated
Start date February 1, 2022
Est. completion date March 11, 2022

Study information

Verified date April 2022
Source University Hospital Inselspital, Berne
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Cerebral blood flow (CBF) is of paramount importance to human brain function, as the brain relies on a continuous blood supply to meet its energy needs. Blockage of a cerebral blood vessel during neurosurgery, even if transient and short-lived, may result in irreversible brain tissue damage (i.e. stroke) and loss of cortical function, if not identified quickly enough. Laser speckle contrast imaging (LSCI) has been demonstrated to provide the ability to visualize flow in vessels in real time and continuously without the need for contrast agents. In LSCI, the tissue of interest is illuminated with low power laser light at red or near infrared wavelengths and the light reflected from the tissue surface is imaged onto a camera. The resulting images are laser speckle patterns and a computer processes the images to produce speckle contrast images, which are images of the motion within the field of view (ie, blood flow). The purpose of this clinical investigation is to assess the usefulness and accuracy of LSCI compared to ICGA and/or FA during neurovascular surgery. LSCI videos will be recorded automatically intraoperatively in each patient before, during, and after ICGA and/or FA in the same surgical field of view to guarantee comparability of the methods.


Description:

Cerebral blood flow (CBF) is of paramount importance to human brain function, as the brain relies on a continuous blood supply to meet its energy needs. Blockage of a cerebral blood vessel during neurosurgery, even if transient and short-lived, may result in irreversible brain tissue damage (i.e. stroke) and loss of cortical function, if not identified quickly enough. Neurosurgery involves the treatment of blood-vessel related pathologies within the brain, like intracranial aneurysms, arteriovenous malformations and dural arteriovenous fistulas, but also the handling of vessels during brain tumor resections. For these operations, assessment of flow in vessels is of paramount importance. So far, the surgeon can not "see" blood flowing inside the artery or vein. Real-time flow visualization during surgery could help neurosurgeons better understand the consequences of vascular occlusion events during surgery, recognize potential adverse complications, and thus prompt timely intervention to reduce the risk of stroke. The current standard for visualizing flow in arteries during surgery is indocyanine green angiography (ICGA) and fluorescein angiography (FA), which involves administering a bolus of fluorescent dye intravenously and imaging the wash-in of the dye to determine which vessels are perfused. Both ICGA and FA provide only a punctual view of perfusion over several seconds, being far away from a continuous assessment. Laser speckle contrast imaging (LSCI) has been demonstrated to provide the ability to visualize flow in vessels in real time and continuously without the need for contrast agents. In LSCI, the tissue of interest is illuminated with low power laser light at red or near infrared wavelengths and the light reflected from the tissue surface is imaged onto a camera. The resulting images are laser speckle patterns and a computer processes the images to produce speckle contrast images, which are images of the motion within the field of view (ie, blood flow). With these properties LSCI has the potential to deliver for the first time continuous visualisation of blood flow in large and small vessels and to overcome limitations of ICGA and FA. LSCI is an established technique for studies of CBF and has predominantly been used to study microcirculation of the cerebral cortex during neurosurgical procedures. However, the spatial resolution in the clinical setting and its accuracy compared to ICGA and FA are unclear. The purpose of this clinical investigation is to assess the usefulness and accuracy of LSCI compared to ICGA and/or FA during neurovascular surgery. LSCI videos will be recorded automatically intraoperatively in each patient before, during, and after ICGA and/or FA in the same surgical field of view to guarantee comparability of the methods.


Recruitment information / eligibility

Status Completed
Enrollment 20
Est. completion date March 11, 2022
Est. primary completion date March 11, 2022
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Vascular pathology of the brain or brain tumors requiring elective microsurgical treatment (e.g., aneurysm, arteriovenous malformation, dural arteriovenous fistula, glioma, meningioma, metastasis) - Adults (18 years or older) - Informed consent signed by the subject Exclusion Criteria: • Patients lacking capacity to consent

Study Design


Intervention

Device:
Laser speckle contrast imaging (LSCI)
LSCI videos will be recorded automatically intraoperatively in each patient before, during, and after ICGA and/or FA in the same surgical field of view to guarantee comparability of the methods.

Locations

Country Name City State
Switzerland Department of Neurosurgery Bern

Sponsors (1)

Lead Sponsor Collaborator
University Hospital Inselspital, Berne

Country where clinical trial is conducted

Switzerland, 

Outcome

Type Measure Description Time frame Safety issue
Primary Agreement of ICG/FA and LSCI-findings Agreement of ICG/FA and LSCI-findings determinating flow in exposed vessels classified as no flow, delayed flow, normal flow During surgery
Secondary Vessels examined with Laser speckle contrast imaging (LSCI) Vessels examined with Laser speckle contrast imaging (LSCI) During surgery
Secondary Vessels examined with Indocyanine green angiography (ICGA) Vessels examined with Indocyanine green angiography (ICGA) During surgery
Secondary Vessels examined with Fluorescein angiography (FA) Vessels examined with Fluorescein angiography During surgery
See also
  Status Clinical Trial Phase
Active, not recruiting NCT04539574 - An Investigational Scan (7T MRI) for the Imaging of Central Nervous System Tumors N/A
Enrolling by invitation NCT04461002 - Evaluation of the Correlation Between Molecular Phenotype and Radiological Signature (by PET-scanner and MRI) of Incident WHO II and III Grade Gliomas.
Terminated NCT01902771 - Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors Phase 1
Completed NCT03242824 - The Utility of 18F-DOPA-PET in the Treatment of Recurrent High-grade Glioma Phase 2
Recruiting NCT04186832 - Step Count Monitoring as a Measure of Physical Activity in Patients With Newly Diagnosed Glioma Undergoing Radiation Therapy N/A
Completed NCT00424554 - Low-dose Temozolomide for 2 Weeks on Brain Tumor Enzyme in Patients With Gliomas (P04602 AM1) (Completed) Phase 2
Recruiting NCT05968053 - Detection of Microplastics and Nanoplastics in Neurosurgery Patients (DT-MiNi)
Not yet recruiting NCT04550663 - NKG2D CAR-T(KD-025) in the Treatment of Relapsed or Refractory NKG2DL+ Tumors Phase 1
Completed NCT02805179 - A Study of High-Dose Chemoradiation Using Biologically-Based Target Volume Definition in Patients With Glioblastoma Phase 2
Terminated NCT04556929 - Enhanced Detection in Glioma Excision N/A
Not yet recruiting NCT06408428 - Glioma Intraoperative MicroElectroCorticoGraphy N/A
Recruiting NCT06043232 - MMR/MSI Phenotypes in Prediction of Tumor Vaccine Benefit for Gliomas
Not yet recruiting NCT06043765 - Reducing Cognitive Impairment in Glioma With Repetitive Transcranial Magnetic Stimulation and Cognitive Strategy Training N/A
Not yet recruiting NCT05025969 - Evaluation of the Incidence of NTRK Gene Fusion in Adult Brain Tumours
Completed NCT02978261 - Study of a c-Met Inhibitor PLB1001 in Patients With PTPRZ1-MET Fusion Gene Positive Recurrent High-grade Gliomas Phase 1
Completed NCT01836536 - Search for a Link Between Response to Treatment and Circulating Leucocytes in High Grade Glioma Patients N/A
Terminated NCT01502605 - Phase I Study of Orally Administered Aminolevulinic Acid for Resection of Malignant Astrocytomas Phase 1
Completed NCT01479686 - iMRI Guided Resection in Cerebral Glioma Surgery Phase 3
Completed NCT01212731 - Skull Base and Low Grade Glioma Neurocognitive Magnetic Resonance Imaging (MRI) Study
Not yet recruiting NCT00977327 - Comparison of Neuro-navigational Systems for Resection-Control of Brain Tumors N/A