Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04001257
Other study ID # GLIOFET (29BRC19.0140)
Secondary ID
Status Completed
Phase
First received
Last updated
Start date June 17, 2019
Est. completion date September 17, 2019

Study information

Verified date January 2020
Source University Hospital, Brest
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Role of 18F-FET PET for grading gliomas according to 2016 WHO classification: value of quantitative and qualitative data obtained by 18F-FET PET for differentiating low grade glioma (WHO II) versus high grade gliomas (WHO III and IV)


Description:

The management and prognosis of patients with glioma is highly dependent on the tumour grade according to the new 2016 classification of the World Health Organization (WHO), which incorporates molecular characteristics. Standard magnetic resonance imaging (MRI) enhanced by contrast is the basis of imaging primary brain tumours including gliomas. Nevertheless MRI specificity to type glioma is limited. Recently, positron emission tomography (PET) molecular imaging using radiolabeled amino acids or their analogues has been recommended by the Neuro-Oncology Response Assessment (RANO) working group for differential diagnosis of brain lesions, non-invasive classification of glial tumours, prognostic value, tumour delineation, stereotactic biopsy radiotherapy planification and treatments follow-up, to provide additional informations beyond MRI on biological processes such as cell proliferation, membrane biosynthesis, glucose consumption and absorption of amino acid analogues. Among the radiotracers used in PET, radiolabeled amino acids or their analogues are increasingly used in clinical routine for glioma imaging. Although most previous PET studies focused on brain gliomas used L-[methyl- 11 C] -methionine (11C-MET), the fluorinated amino acid analogue O - (2-[ 18 F] fluoroethyl) -L-tyrosine (18F-FET) appeared to be a favorable marker for clinical routine due to his longer half-life than Carbone 11. Recent european guidelines attempt to provide some guidance on the performance and interpretation of molecular imaging. The authors recommend a static (20-40 mn after injection (Pi)) or dynamic PET acquisition (40-50 mn from injection). A visual analysis can be completed by a quantitative analysis which consists to measure mean and maximal tumour activity uptake values (SUVmean and SUVmax) and their respective tumour to background ratios (TBRmean and TBRmax). Although the mean physiological brain activity uptake is well defined, the measurement of mean glioma activity uptake is less clear. Indeed, TBRmean depends on the delineation of the tumour ROI and/or VOI. Most often previously, VOI was determined by a 3D contouring process using a tumour-to-brain ratio of at least 1.6 at the beginning of the scan, threshold defined on a brain gliomas biopsy-controlled study. Moreover, Albert et al. emphasized the interest of early TBRmax.To our knowledge, none study evaluated others parameters as SUVmax, SUVmean and TBRmean in early period. In this context, the aim of this study was to compare quantitative and qualitative PET parameters between Low Grade Glioma and High Grade Glioma.


Recruitment information / eligibility

Status Completed
Enrollment 60
Est. completion date September 17, 2019
Est. primary completion date September 17, 2019
Accepts healthy volunteers No
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria:

- glial tumor

- patient underwent 18F-FET PET at Brest University Hospital

- no opposite to participate

Exclusion Criteria:

- patient Under 18 years old

- opposite to participate

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
France CHRU de Brest Brest

Sponsors (1)

Lead Sponsor Collaborator
University Hospital, Brest

Country where clinical trial is conducted

France, 

Outcome

Type Measure Description Time frame Safety issue
Primary quantitative criteria (SUVmax) between 2 groups (glioma II vs glioma III-IV) study mean value of SUVmax obtained by 18F-FET PET between 2 groups (glioma II vs glioma III-IV) 3 months
Primary quantitative criteria (TBRmax) between 2 groups (glioma II vs glioma III-IV) study mean value of TBRmax obtained by 18F-FET PET between 2 groups (glioma II vs glioma III-IV) 3 months
Primary quantitative criteria (SUVmean) between 2 groups (glioma II vs glioma III-IV) study mean value of SUVmean obtained by 18F-FET PET between 2 groups (glioma II vs glioma III-IV) 3 months
Primary quantitative criteria (TBRmean) between 2 groups (glioma II vs glioma III-IV) study mean value of TBRmean obtained by 18F-FET PET between 2 groups (glioma II vs glioma III-IV) 3 months
Primary quantitative criteria (SUVpeak) between 2 groups (glioma II vs glioma III-IV) study mean value of SUVpeak obtained by 18F-FET PET between 2 groups (glioma II vs glioma III-IV) 3 months
Primary quantitative criteria (métabolic tumoral volume MTV) between 2 groups (glioma II vs glioma III-IV) study mean value of MTV obtained by 18F-FET PET between 2 groups (glioma II vs glioma III-IV) 3 months
Primary quantitative criteria (Total Lesion Glycolysis TLG) between 2 groups (glioma II vs glioma III-IV) study mean value of TLG obtained by 18F-FET PET between 2 groups (glioma II vs glioma III-IV) 3 months
Primary quantitative criteria (SUVmin) between 2 groups (glioma II vs glioma III-IV) study mean value of SUVmin obtained by 18F-FET PET between 2 groups (glioma II vs glioma III-IV) 3 months
Secondary qualitative criteria (Time Activity Curve TAC) between 2 groups (glioma II vs glioma III-IV) study qualitative data obtained by 18F-FET PET between 2 groups (glioma II vs glioma III-IV) 3 months
Secondary agreement between readers for quantitative and qualitative criteria study inter and intra observers agreement 3 months
Secondary diagnostic accuracy of clinical data to discriminate the 2 groups of glioma (symptom or size of tumor) study diagnostic accuracy of clinical data 3 months
Secondary diagnostic accuracy of biological criteria (as MGMT mutation or IDH status or 1p19q codeletion, ATRX status) to discriminate the 2 groups of glioma study diagnostic accuracy of biological data 3 months
Secondary diagnostic accuracy of PET criteria (SUVmax, TBRmax, SUVmean, TBRmean, SUVpeak, SUVmin, TLG and MTV) between the 2 groups of glioma study diagnostic accuracy of PET data 3 months
Secondary prognostic value of F-FET PET data on PET Baseline on PFS study the prognostic value of PET criteria on PFS 2 years and 3 months
Secondary prognostic value of F-FET PET data on PET Baseline on OS study the prognostic value of PET criteria on OS 2 years and 3 months
Secondary prognostic value of variation of quantitative PET data (SUVmax, TBRmax, SUVmean, TBRmean, SUVpeak, SUVmin, MTV, TLG) (for example deltaSUVmax between PET Baseline and PET 3 months) on PFS modification of PET criteria between PET Baseline and PET at follow-up and their prognostic value on PFS 2 years and 3 months
Secondary prognostic value of variation of quantitative PET data (SUVmax, TBRmax, SUVmean, TBRmean, SUVpeak, SUVmin, MTV, TLG) (for example deltaSUVmax between PET Baseline and PET 3 months) on OS modification of PET criteria between PET Baseline and PET at follow-up and their prognostic value on OS 2 years and 3 months
See also
  Status Clinical Trial Phase
Active, not recruiting NCT04539574 - An Investigational Scan (7T MRI) for the Imaging of Central Nervous System Tumors N/A
Enrolling by invitation NCT04461002 - Evaluation of the Correlation Between Molecular Phenotype and Radiological Signature (by PET-scanner and MRI) of Incident WHO II and III Grade Gliomas.
Terminated NCT01902771 - Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors Phase 1
Completed NCT03242824 - The Utility of 18F-DOPA-PET in the Treatment of Recurrent High-grade Glioma Phase 2
Recruiting NCT04186832 - Step Count Monitoring as a Measure of Physical Activity in Patients With Newly Diagnosed Glioma Undergoing Radiation Therapy N/A
Completed NCT00424554 - Low-dose Temozolomide for 2 Weeks on Brain Tumor Enzyme in Patients With Gliomas (P04602 AM1) (Completed) Phase 2
Recruiting NCT05968053 - Detection of Microplastics and Nanoplastics in Neurosurgery Patients (DT-MiNi)
Not yet recruiting NCT04550663 - NKG2D CAR-T(KD-025) in the Treatment of Relapsed or Refractory NKG2DL+ Tumors Phase 1
Completed NCT02805179 - A Study of High-Dose Chemoradiation Using Biologically-Based Target Volume Definition in Patients With Glioblastoma Phase 2
Terminated NCT04556929 - Enhanced Detection in Glioma Excision N/A
Not yet recruiting NCT06408428 - Glioma Intraoperative MicroElectroCorticoGraphy N/A
Recruiting NCT06043232 - MMR/MSI Phenotypes in Prediction of Tumor Vaccine Benefit for Gliomas
Not yet recruiting NCT06043765 - Reducing Cognitive Impairment in Glioma With Repetitive Transcranial Magnetic Stimulation and Cognitive Strategy Training N/A
Not yet recruiting NCT05025969 - Evaluation of the Incidence of NTRK Gene Fusion in Adult Brain Tumours
Completed NCT02978261 - Study of a c-Met Inhibitor PLB1001 in Patients With PTPRZ1-MET Fusion Gene Positive Recurrent High-grade Gliomas Phase 1
Completed NCT01836536 - Search for a Link Between Response to Treatment and Circulating Leucocytes in High Grade Glioma Patients N/A
Terminated NCT01502605 - Phase I Study of Orally Administered Aminolevulinic Acid for Resection of Malignant Astrocytomas Phase 1
Completed NCT01479686 - iMRI Guided Resection in Cerebral Glioma Surgery Phase 3
Completed NCT01212731 - Skull Base and Low Grade Glioma Neurocognitive Magnetic Resonance Imaging (MRI) Study
Terminated NCT01044966 - A Study of Intraventricular Liposomal Encapsulated Ara-C (DepoCyt) in Patients With Recurrent Glioblastoma Phase 1/Phase 2