Clinical Trials Logo

Clinical Trial Summary

This is a pilot, randomized, two arm neoadjuvant vaccine study in human leukocyte antigen-A2 positive (HLA-A2+) adults with World Health Organization (WHO) grade II glioma, for which surgical resection of the tumor is clinically indicated. Co-primary objectives are to determine: 1) the safety of the novel combination of subcutaneously administered IMA950 peptides and poly-ICLC (Hiltonol) and i.v. administered CDX-1127 (Varlilumab) in the neoadjuvant approach; and 2) whether addition of i.v. CDX-1127 (Varlilumab) increases the response rate and magnitude of CD4+ and CD8+ T-cell responses against the IMA950 peptides in post-vaccine peripheral blood mononuclear cell (PBMC) samples obtained from participating patients.


Clinical Trial Description

Low-grade gliomas (LGG), the most common of which are pilocytic astrocytomas, diffuse astrocytomas, and oligodendrogliomas are a diverse family of central nervous system (CNS) neoplasms that occur in children and adults. Based on data from the American Cancer Society and Central Brain Tumor Registry of the United States (CBRTUS), approximately 1,800 LGG were diagnosed in 2006, thus representing approximately 10% of newly diagnosed primary brain tumors in the United States. Pilocytic astrocytomas (WHO grade I) are the most common brain tumor in children 5 to 19 years of age. Diffuse astrocytomas and oligodendrogliomas are all considered WHO grade II low grade gliomas (LGG) and are more common in adults. Pilocytic astrocytomas are generally well circumscribed histologically and radiographically and amenable to cure with gross total resection. In contrast, the diffuse astrocytomas and oligodendrogliomas are more infiltrative and less amenable to complete resection. From a molecular genetics standpoint, the most common alterations in LGG are Isocitrate dehydrogenase 1 (IDH1) mutations and mutations in the tumor suppressor gene tumor protein 53 (TP53), located on chromosome 17, the gene product of which is a multi-functional protein involved in the regulation of cell growth, cell death (apoptosis), and transcription. Additionally, several molecular factors are of favorable prognostic significance, particularly the presence of 1p/19q co-deletion and isocitrate dehydrogenase (IDH) mutations. WHO grade II LGGs are at risk to undergo malignant transformation into more aggressive and lethal WHO grade III or IV high-grade glioma (HGG). Even with a combination of available therapeutic modalities (i.e., surgery, radiation therapy (RT), chemotherapy), the invasive growth and resistance to therapy exhibited by these tumors results in recurrence and death in most patients. Although postoperative RT in LGG significantly improves 5-year progression-free survival (PFS), it does not prolong overall survival (OS) compared with delayed RT given at the time of progression. Early results from a randomized trial of radiation therapy plus procarbazine, lomustine, and vincristine (PCV) chemotherapy for supratentorial adult LGG (RTOG 9802) demonstrated improved PFS in patients receiving PCV plus RT compared RT alone. Nonetheless, PCV is considerably toxic and currently not widely used for management of glioma patients. Although chemotherapy with temozolomide (TMZ) is currently being investigated in LGG patients, it is unknown whether it confers improved OS in these patients. Further, our recent study has indicated that 6 of 10 LGG cases treated with TMZ progressed to HGG with markedly increased exome mutations and, more worrisome, driver mutations in the retinoblastoma tumor suppressor (RB) and Protein kinase B (AKT)-Mechanistic target of rapamycin (mTOR) pathways, with predominant C>T/G>A transitions at CpC and CpT dinucleotides, strongly suggesting a signature of TMZ-induced mutagenesis; this study also showed that in 43% of cases, at least half of the mutations in the initial tumor were undetected at recurrence, while IDH mutations were the only type of mutations that persisted in the initial and recurrent tumors. These data suggests the possibility that treatment of LGG patients with TMZ may enhance oncogenic mutations and genetic elusiveness of LGG, therefore calling for development of safer and effective therapeutic modalities such as vaccines. Taken together, LGG are considered a premalignant condition for HGG, such that novel interventions to prevent malignant transformation need to be evaluated in patients with LGG. Immunotherapeutic modalities, such as vaccines, may offer a safe and effective option for these patients due to the slower growth rate of LGG (in contrast with HGG), which should allow sufficient time for multiple immunizations and hence high levels of anti-glioma immunity. Because patients with LGGs are generally not as immuno-compromised as patients with HGG, they may also exhibit greater immunological response to and benefit from the vaccines. Further, the generally mild toxicity of vaccines may improve quality of life compared with chemotherapy or RT. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT02924038
Study type Interventional
Source University of California, San Francisco
Contact
Status Terminated
Phase Phase 1
Start date April 3, 2017
Completion date December 31, 2022

See also
  Status Clinical Trial Phase
Active, not recruiting NCT04539574 - An Investigational Scan (7T MRI) for the Imaging of Central Nervous System Tumors N/A
Enrolling by invitation NCT04461002 - Evaluation of the Correlation Between Molecular Phenotype and Radiological Signature (by PET-scanner and MRI) of Incident WHO II and III Grade Gliomas.
Terminated NCT01902771 - Dendritic Cell Vaccine Therapy With In Situ Maturation in Pediatric Brain Tumors Phase 1
Completed NCT03242824 - The Utility of 18F-DOPA-PET in the Treatment of Recurrent High-grade Glioma Phase 2
Recruiting NCT04186832 - Step Count Monitoring as a Measure of Physical Activity in Patients With Newly Diagnosed Glioma Undergoing Radiation Therapy N/A
Completed NCT00424554 - Low-dose Temozolomide for 2 Weeks on Brain Tumor Enzyme in Patients With Gliomas (P04602 AM1) (Completed) Phase 2
Recruiting NCT05968053 - Detection of Microplastics and Nanoplastics in Neurosurgery Patients (DT-MiNi)
Not yet recruiting NCT04550663 - NKG2D CAR-T(KD-025) in the Treatment of Relapsed or Refractory NKG2DL+ Tumors Phase 1
Completed NCT02805179 - A Study of High-Dose Chemoradiation Using Biologically-Based Target Volume Definition in Patients With Glioblastoma Phase 2
Terminated NCT04556929 - Enhanced Detection in Glioma Excision N/A
Not yet recruiting NCT06408428 - Glioma Intraoperative MicroElectroCorticoGraphy N/A
Recruiting NCT06043232 - MMR/MSI Phenotypes in Prediction of Tumor Vaccine Benefit for Gliomas
Not yet recruiting NCT06043765 - Reducing Cognitive Impairment in Glioma With Repetitive Transcranial Magnetic Stimulation and Cognitive Strategy Training N/A
Not yet recruiting NCT05025969 - Evaluation of the Incidence of NTRK Gene Fusion in Adult Brain Tumours
Completed NCT02978261 - Study of a c-Met Inhibitor PLB1001 in Patients With PTPRZ1-MET Fusion Gene Positive Recurrent High-grade Gliomas Phase 1
Terminated NCT01502605 - Phase I Study of Orally Administered Aminolevulinic Acid for Resection of Malignant Astrocytomas Phase 1
Completed NCT01836536 - Search for a Link Between Response to Treatment and Circulating Leucocytes in High Grade Glioma Patients N/A
Completed NCT01479686 - iMRI Guided Resection in Cerebral Glioma Surgery Phase 3
Completed NCT01212731 - Skull Base and Low Grade Glioma Neurocognitive Magnetic Resonance Imaging (MRI) Study
Withdrawn NCT00985036 - Vascular Endothelial Growth Factor (VEGF) Levels in Brain Tumor Patients N/A