Clinical Trials Logo

Clinical Trial Summary

The investigators are studying the effects of exposure to diesel exhaust on lung inflammation in the presence and absence of an inhaled corticosteroid. Although data is mixed, studies show that asthmatics have increased lung inflammation and worse symptoms during periods of higher air pollution despite taking their anti-inflammatory corticosteroid medication. One possible reason is that air pollution exposure may decrease the ability of corticosteroids to combat inflammation. To test this volunteers will inhale either a placebo or a corticosteroid, before sitting in an exposure booth for 2 hours breathing either filtered air or diluted diesel exhaust. Samples will be collected before and after exposure to analyze the effects of budesonide and diesel exhaust exposure.


Clinical Trial Description

1) Purpose Inhalation of air pollutants leads to both airway inflammation, with increased cytokine expression and inflammatory cell recruitment to the airways, and to airway hyperresponsiveness, which together contribute to airway resistance and breathing difficulties. Correlational data indicate that exposure to air pollution increases inhaled corticosteroids (ICS) use in asthmatics, suggesting that steroidal anti-inflammatory medications are suboptimally effective under these conditions. However, a major issue is that no study has yet been performed specifically to determine the effects of controlled diesel exhaust (DE) exposure on responses to ICS. Furthermore, investigators need better insight into mechanisms, including the effects of epigenetic modifications and polymorphisms in oxidative stress response genes, which remain under explored. Investigators anticipate that an improved understanding of air pollution-induced ICS hyporesponsiveness (reduced effectiveness) could underpin preventative guidelines, guide ICS usage in response to environmental exposures, and inform rational pharmaceutical development. Ultimately this could lead to fewer exacerbations in asthmatic and other susceptible populations. Hypothesis: Acute exposure to DE reduces ICS-inducible gene expression in vivo in asthmatics, in part through effects on epigenetic processes. Justification: Air pollution exposure correlates with increased use of ICS inhalers in asthmatics, suggesting that ICS offer less control during periods of higher air pollution. As genes induced by ICS are critical in reducing inflammatory messenger ribonucleic acid (mRNA) and protein expression, the investigators have chosen to focus on the effects of DE on ICS-inducible gene expression as our primary endpoint. Research Method: To test this the effects of air pollution exposure on a corticosteroid, volunteers will inhale either a placebo (inhaler containing no medication) or budesonide (1.6mg), before sitting in our exposure booth for 2 hours breathing either filtered air (as a control) or diluted diesel exhaust (standardized to 300µg/m³ of particulate matter with a diameter of 2.5 micrometers or less). Volunteers will visit our lab four different times to be exposed to: 1) placebo & filtered air, 2) placebo & diesel exhaust, 3) corticosteroid and filtered air, and 4) corticosteroid and diesel exhaust. Investigators can then compare responses to each of these combinations of exposures. Investigators will take blood samples before and after volunteers complete each of these exposures to track how they affect the body. Six hours after placebo or budesonide inhalation a research bronchoscopy will be performed during which a very thin flexible tube will be inserted through the mouth and down into lungs to collect samples from each volunteer. Bronchoalveolar lavage, bronchial washes, bronchial brushes and tissue biopsies will be obtained for analysis of gene expression and epigenetic endpoints. Nasal lavage samples will also be collected to examine responses in the upper airways and blood and urine will be studied to examine systemic responses. Spirometry will be used to assess effects on airway function. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03615742
Study type Interventional
Source University of British Columbia
Contact Parteek (PJ) Johal, BCS
Phone 6048755132
Email de.study@ubc.ca
Status Recruiting
Phase Phase 4
Start date December 1, 2018
Completion date December 31, 2025

See also
  Status Clinical Trial Phase
Completed NCT03159013 - Toxicokinetic Study of Lambda-cyhalothrin Biomarkers of Exposure N/A
Not yet recruiting NCT05927077 - Chemometers to Determine the Environmental and Human Exposome by Mixtures of Pollutants
Completed NCT03698344 - Sympathetic Nerve Response Incited by Biodiesel Exhaust Exposure N/A
Completed NCT02707172 - Removal of Dermal Exposure to Phthalate Ester by Hand Washing N/A
Completed NCT01492517 - Epigenetic Effects of Diesel Exhaust and Ozone Exposure N/A
Completed NCT01976039 - Rhinopharyngeal Retrograde Clearance is Effective to Adequate Upper Airways Function in Adults N/A
Suspended NCT04013256 - Controlled Exposure of Healthy Nonsmokers to Secondhand and Thirdhand Cigarette Smoke N/A
Completed NCT03232086 - Responses to Exposure to Low Levels of Concentrated Ambient Particles in Healthy Young Adults N/A
Completed NCT01960920 - Effects of Air Pollution Exposure Reduction by Filter Mask on Heart Failure N/A