Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to show safety and feasibility to administer patients own mesenchymal stem cells to show signs of repair of emphysematous lung tissue


Clinical Trial Description

Study Rationale Emphysema is one of the two main components of chronic obstructive pulmonary disease (COPD) and contributes over many years to airway obstruction by the loss of elastic recoil around the smallest airways. Emphysema is induced by cigarette smoking and it is widely accepted that the disease is caused by excessive proteolytic activity by proteases and a chronic inflammatory process, characterized by a cellular influx consisting of macrophages, neutrophils and T cells. This inflammatory response is steroid resistant and leads to slow but persistent alveolar destruction, resulting in enlarged lungs with bullous parts in both lungs. In addition to a central role of innate immunity, recent studies suggest that also (auto)antigen specific immunity may play a role in the pathogenesis of COPD.

Currently, the only treatment available for severe emphysema is lung volume reduction surgery (LVRS) to remove the most destroyed parts of the lungs. The surgery is generally performed in two separate sessions with a 10-12 weeks interval, with each lung as a separate surgical target. This surgical treatment allows improved ventilation in the remaining less affected areas of the lungs as demonstrated by post-surgical clinical improvement of lung function and increased survival in a subgroup of patients. Delayed wound healing after LVRS is an important clinical problem. It may lead to prolonged hospital stay due to air leakage from the lungs into the thoracic cavity. Lung emphysema patients are at high risk for prolonged air leakage after this surgery, which is most likely explained by the inflammatory process related to the disease.

Mesenchymal stromal cells (MSC) are multipotent cells that can differentiate into several cell types, including fibroblasts, osteoblasts, adipocytes and chondrocyte progenitors. In recent years it has become evident that bone-marrow derived MSC (BM-MSC) have potent immunomodulatory effects on T and B cells and in animal models of chronic inflammation in vivo. In addition, it has been shown that MSC express or release a variety of soluble factors implicated in anti-apoptotic signaling and cell growth. Importantly, encouraging results have recently been obtained with the treatment of severe steroid resistant Graft versus Host Disease (GvHD) with donor (allogeneic) BM-MSC. Furthermore, in our institute autologous BM-MSC are currently under investigation for treatment of tissue injury due to autoimmune disease (Crohn's Disease) and allogeneic immune responses (renal transplant recipients with biopsy proven subclinical rejection). The combination of the immunosuppressive, growth-potentiating and anti-apoptotic properties of BM-MSC may lead to accelerated wound healing after LVRS and might induce lung repair. In the present phase I study the investigators will assess the safety and feasibility of intravenous (i.v.) administration of BM-MSC prior to LVRS in a small group of severe pulmonary emphysema patients. Results of this safety and feasibility study may lead to future studies on the use of BM-MSC for immunomodulation and induction of repair in patients with pulmonary emphysema and milder stages of COPD.

Objective To test the safety and feasibility of intravenous administration of autologous BM-MSC after one-sided LVRS and prior to a second LVRS procedure for patients with severe pulmonary emphysema.

Study design Open label, non-randomized, non-blinded, prospective clinical trial. Patients are operated in two sessions; initially on one lung without pre-surgical infusion of BM-MSC, followed by a second surgical procedure on the contralateral lung which is preceded by two i.v. infusions of BM-MSC one week apart, 4 and 3 weeks prior to the lung surgery.

Study population Patients of at least 40 years of age with end-stage emphysema who are eligible for lung volume reduction surgery.

Intervention The intervention consists of two doses of BM-MSC infusions in 10 patients with a one week interval, 4 and 3 weeks prior to the second LVRS respectively.

Study endpoints

Primary endpoint:

1. Safety and feasibility of intravenous infusion of two doses of BM-MSC with 1 wk interval after the first LVRS and prior to a second LVRS. Toxicity criteria will be evaluated by grade according to WHO.

Secondary endpoint:

1. Difference in days between post-surgical transpleural air leak of the lung in each patient after the first (no infusion of BM-MSC) and second surgical (3 weeks after the last i.v. infusion of BM-MSC) intervention.

2. Histological responses in resected lung tissue (measured by immunohistochemistry of markers of inflammation, fibrosis and repair). ;


Study Design

Endpoint Classification: Safety Study, Intervention Model: Single Group Assignment, Masking: Open Label, Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT01306513
Study type Interventional
Source Leiden University Medical Center
Contact
Status Completed
Phase Phase 1
Start date October 2010
Completion date November 2012

See also
  Status Clinical Trial Phase
Recruiting NCT05825261 - Exploring Novel Biomarkers for Emphysema Detection
Completed NCT02914340 - REACH SVS Control Patient Cross-Over Study N/A
Completed NCT02999685 - Home-based Health Management of Chronic Obstructive Lung Disease (COPD) Patients N/A
Completed NCT02232841 - Electrical Impedance Imaging of Patients on Mechanical Ventilation N/A
Completed NCT02238327 - Longitudinal Evaluation of HIV-associated Lung Disease Phenotypes
Withdrawn NCT01908933 - Study of the AeriSeal System Treatment in Patients With Advanced Non-Upper Lobe Predominant Heterogeneous Emphysema Phase 3
Completed NCT01615484 - Ex-vivo Perfusion and Ventilation of Lungs Recovered From Non-Heart-Beating Donors to Assess Transplant Suitability N/A
Completed NCT01476995 - Prognostic Indicators as Provided by the EPIC ClearView N/A
Completed NCT01710449 - Evaluation of Regional Ventilation Using 19F MRI of Inert Perfluorinated Gases Mixed With Oxygen Phase 1
Completed NCT00475007 - Clinical Trial to Evaluate the Safety and Effectiveness of the IBV® Valve System for the Treatment of Severe Emphysema N/A
Suspended NCT00523094 - Vibration Response Imaging (VRI) in Patients That Are Candidates for Undergoing Pulmonary Operation Procedure N/A
Recruiting NCT00129350 - Assessment of Heart and Heart-Lung Transplant Patient Outcomes Following Pulmonary Rehabilitation Phase 1
Completed NCT01953523 - Safety and Clinical Outcomes Study: SVF Deployment for Orthopedic, Neurologic, Urologic, and Cardio-pulmonary Conditions N/A
Completed NCT00000621 - Feasibility of Retinoic Acid Treatment in Emphysema (FORTE) Phase 2
Completed NCT00005292 - Alpha1-antitrypsin Deficiency Registry N/A
Recruiting NCT04537182 - Surgical Compared to Bronchoscopic Lung Volume Reduction in Patients With Severe Emphysema N/A
Active, not recruiting NCT02713347 - Advancing Symptom Alleviation With Palliative Treatment N/A
Recruiting NCT04302272 - STRIVE Post-Market Registry Study
Completed NCT04435327 - Lung Damage Caused by SARS-CoV-2 Pneumonia (COVID-19)
Completed NCT03636347 - A 12-week Study Treating Participants Who Have alpha1-antitrypsin-related COPD With Alvelestat (MPH966) or Placebo. Phase 2