Dysphagia Clinical Trial
Official title:
Comparison of the Effects of Three Different Exercises Used in Swallowing Rehabilitation on Suprahyoid Muscle Activation, Muscle Strength, Dysphagia Limit and Perceived Exertion Level
Swallowing is a set of functions that start with the acceptance of food and end with its delivery to the stomach. One of the most important problems associated with swallowing disorders is insufficient airway closure and the risk of aspiration. It is due to the inadequacy of laryngeal elevation that should occur during swallowing. Suprahyoid muscles are the most basic structures responsible for laryngeal elevation. Insufficient activation of the suprahyoid muscles causes insufficient laryngeal elevation. The suprahyoid muscles consist of a group of muscles located in the anterior region of the neck between the hyoid bone and the mandible. The muscles which forming SH muscles m. digastricus, m. stylohyoideus, m. mylohyoideus and m. geniohyoideus muscles work as a group. SH muscles play a primary role in controlling hyoid bone movement during swallowing due to their relationship with the hyoid bone. It has been reported that the muscle with the highest potential to move the hyoid anteriorly is the geniohyoid muscle, and the mylohyoid muscle has the highest potential to move the hyoid in the superior direction. In addition, in another study, it was stated that since the geniohyoid and mylohyoid muscles have greater structural potential than other SH muscles for anterior and superior displacement of the hyoid, respectively. By understanding the potential for hyoid excursion arising from the structural properties of these muscles, therapists can target specific muscles with exercises designed to promote hyolaryngeal elevation. Exercises such as Shaker exercise and resistance chin tuck in the literature either directly involve concentric training of the suprahyoid muscles or indirectly aim to gain strength by strengthening the neck flexors. In the light of the available evidence in the literature, eccentric training is also a viable method in swallowing rehabilitation. In eccentric training, the muscle is positioned by shortening its length. Eccentric training can be done by applying resistance to the jaw while the mouth is open and asking the mouth to be closed in a controlled manner against the resistance. In addition, swallowing exercise can be planned by adjusting the mouth opening and placing the SH muscles at the most appropriate angle to generate force. The aim of this study is to compare the effects of these three different exercises on suprahyoid muscle activation, muscle strength, dysphagia limit and perceived exertion level.
Swallowing is a set of functions that start with the acceptance of food and end with its delivery to the stomach. The oral preparation consists of 4 phases, namely the oral, pharyngeal and esophageal phase. Swallowing disorder (dysphagia) is defined as problems occurring in at least one of the swallowing phases. One of the most important problems associated with swallowing disorders is insufficient airway closure and the risk of aspiration. It is due to the inadequacy of laryngeal elevation that should occur during swallowing. Suprahyoid muscles are the most basic structures responsible for laryngeal elevation. Insufficient activation of the suprahyoid muscles causes insufficient laryngeal elevation. The suprahyoid (SH) muscles consist of a group of muscles located in the anterior region of the neck between the hyoid bone and the mandible. The muscles which forming SH muscles m. digastricus, m. stylohyoideus, m. mylohyoideus and m. geniohyoideus muscles work as a group. SH muscles play a primary role in controlling hyoid bone movement during swallowing due to their relationship with the hyoid bone. It has been reported that the muscle with the highest potential to move the hyoid anteriorly is the geniohyoid muscle, and the mylohyoid muscle has the highest potential to move the hyoid in the superior direction. In addition, in another study, it was stated that since the geniohyoid and mylohyoid muscles have greater structural potential than other SH muscles for anterior and superior displacement of the hyoid, respectively, these two muscles can be targeted for neuromuscular stimulation preferably. Studies have also shown that exercise can increase motor unit involvement for certain functions. By understanding the potential for hyoid excursion arising from the structural properties of these muscles, therapists can target specific muscles with exercises designed to promote hyolaryngeal elevation. Interventions to protect the airway in case of swallowing disorder are aimed at increasing the hyolaryngeal elevation. SH muscles provide elevation of the hyolaryngeal complex and also support the opening of the upper esophageal sphincter (UES). The cricopharyngeal muscle, which opens the UES, is opened by the contraction of the SH muscles and the anterior-superior traction of the hyoid and larynx. Insufficient elevation of the hyoid and larynx causes insufficient opening of the UES, resulting in an increase in the amount of pharyngeal residue and the risk of aspiration. Superior hyolaryngeal excursion during swallowing is thought to contribute to airway protection, preventing aspiration. Anterior hyalaryngeal excursion is thought to be associated with the patency of the UES. Exercises such as Shaker exercise and resistance chin tuck in the literature either directly involve concentric training of the suprahyoid muscles or indirectly aim to gain strength by strengthening the neck flexors. Shaker Exercises were the first exercise developed to increase suprahyoid muscle activation. This exercise, which is characterized by raising the patient's head in the supine position, has been accepted as one of the most basic exercises in dysphagia rehabilitation for many years. In the following years, the Chin Tuck Against Resistance (CTAR) exercise was developed due to the challenging protocol and positional discomfort of the Shaker exercise. In the CTAR exercise, the patient is asked to press a standard size and inflatable ball, which he puts under his chin, towards his sternum. CTAR has become the most commonly used exercise in dysphagia rehabilitation. In the light of the available evidence in the literature, eccentric training is also a viable method in swallowing rehabilitation. In eccentric training, the muscle is positioned by shortening its length. Eccentric training can be done by applying resistance to the jaw while the mouth is open and asking the mouth to be closed in a controlled manner against the resistance. In addition, swallowing exercise can be planned by adjusting the mouth opening and placing the SH muscles at the most appropriate angle to generate force. The aim of this study is to compare the effects of these three different exercises on suprahyoid muscle activation, muscle strength, dysphagia limit and perceived exertion level. H0 Hypothesis: There is no difference between CTAR, Shaker and Eccentric Chin Closure exercises in terms of suprahyoid muscle activation, suprahyoid muscle strength, dysphagia limit and perceived exertion level in healthy individuals. H1 Hypothesis: There is a difference between CTAR, Shaker and Eccentric Chin Closure exercises in terms of suprahyoid muscle activation, suprahyoid muscle strength, dysphagia limit and perceived exertion level in healthy individuals. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Active, not recruiting |
NCT03711474 -
Dysphagia Following Anterior Cervical Spine Surgery; Single Dose Steroid vs Saline (DysDexVSSal)
|
Phase 4 | |
Enrolling by invitation |
NCT04074356 -
Non-invasive Markers of Esophageal Function in Adults
|
N/A | |
Suspended |
NCT04349462 -
Post Critical Illness Dysphagia in the Intensive Care Unit
|
N/A | |
Not yet recruiting |
NCT05982977 -
Study on the Effect Mechanism of Acupuncture Combined With Swallowing Training in Oral Dysphagia of Stroke
|
N/A | |
Recruiting |
NCT03605381 -
MORbidity PRevalence Estimate In StrokE
|
||
Active, not recruiting |
NCT03455608 -
PRO-ACTIVE: Prophylactic Swallow Intervention for Patients Receiving Radiotherapy for Head and Neck Cancer
|
N/A | |
Active, not recruiting |
NCT03604822 -
Music Therapy Protocol to Support Bulbar and Respiratory Functions in ALS
|
N/A | |
Recruiting |
NCT03682081 -
Interventions for Patients With Alzheimer's Disease and Dysphagia
|
N/A | |
Completed |
NCT05700838 -
Refining Cough Skill Training in Parkinson's Disease and Dysphagia
|
Phase 1 | |
Not yet recruiting |
NCT04064333 -
Slow-Stream Expiratory Muscle Strength Training for Veterans With Dysphagia Living in Long-term Care
|
N/A | |
Completed |
NCT02927691 -
Novel Management of Airway Protection in Parkinson's Disease: A Clinical Trial
|
Phase 2 | |
Not yet recruiting |
NCT02724761 -
Prophylactic Racemic Epinephrine in Anterior Cervical Discectomy and Fusion
|
N/A | |
Completed |
NCT01919112 -
Fostering Eating After Stroke With Transcranial Direct Current Stimulation
|
N/A | |
Completed |
NCT01370083 -
Tongue Pressure Profile Training for Dysphagia Post Stroke
|
Phase 2 | |
Withdrawn |
NCT01200147 -
Effectiveness of Rupture of Schatzki's Ring Using Biopsy Forceps Versus SIngle Dilation
|
N/A | |
Completed |
NCT01723358 -
Neuromuscular Electrical Stimulation (NMES) Treatment Technique Therapy in the Management of Young Infants With Severe Dysphagia
|
Phase 2 | |
Completed |
NCT00570557 -
Development of a Web-Based Course to Maintain Skills in Nurses Trained to Screen for Dysphagia
|
N/A | |
Recruiting |
NCT00166751 -
Sonographic Assessment of Laryngeal Elevation
|
N/A | |
Completed |
NCT01476241 -
Percutaneous Endoscopic Gastrostomy Tube Placement by Otorhinolaryngologist
|
N/A | |
Completed |
NCT00717028 -
Functional Endoscopic Evaluation of Swallowing
|
N/A |