Clinical Trials Logo

Clinical Trial Summary

The purpose of this study is to confirm that minimally invasive closed reduction and internal fixation with fully threaded headless cannulated compression screws for distal radius fracture repair has advantages over conventional open reduction internal fixation with titanium plates, providing superior fragment stability and allowing for early rehabilitation exercise of the wrist joint, which improves recovery of function. Also to show that minimally invasive closed reduction and internal fixation with fully threaded headless cannulated compression screws is the more suitable surgical method for repair of distal radius fracture.


Clinical Trial Description

Distal radius fracture is defined as a fracture within 3 cm of the distal articular surface. When radius fracture and ulnar styloid process fracture occur together, internal fixation is generally not pursued; however, adverse events may occur after reduction with external fixation, including unstable fracture fragments, malalignment, and loss of radial inclination and ulnar deviation, leading to wrist function impairment.

The commonly used treatment methods for distal radius fracture include internal fixation with steel plate, internal fixation with Kirschner wire, and external fixation. Open reduction and internal fixation (ORIF) has disadvantages. For example, the pronator teres is incised in palmar ORIF and in situ suturing of the muscle is not possible in most patients after implantation of the titanium plate. Even when suturing is possible, the strength of the pronator teres will decrease after surgery, and a second surgery is needed to remove the titanium plate. Dorsal ORIF is also disadvantageous because more tendons and thin soft tissue may be encountered during surgery. In addition, tendon sheath injury is inevitable, leading to myotenositis, tendon adhesion, and even tendon rupture. Thus, internal fixators should be taken out as early as possible. Satisfactory wrist function outcomes have been achieved with external fixators, in particular with dynamic external fixators. However, although external fixation has good fixing effects, it provides poor lateral stability, resulting in injury to the superficial branch of the radial nerve, screw channel infection, screw channel fracture, screw loosening, and even Sudeck's atrophy. Internal fixation with Kirschner wire generates minimal surgical trauma, but this technique does not provide sufficient strength for fixation and is therefore rarely used at present. There is an urgent need to develop a more stable fixation method for distal radius fracture. Minimally invasive surgery avoids the tissue damage and impairment of physiological function caused by open surgery because of its precise location techniques. Brachial plexus anesthesia allows surgeons to avoid large incisions and excessive bleeding. There are no palmar or dorsal incisions in minimally invasive surgery for distal radius fractures, so the structures surrounding the wrist joint are not iatrogenically damaged, which theoretically improves wrist function recovery.

During C-arm fluoroscopy-assisted minimally invasive closed reduction, either no surgical incision or an incision only 0.5 cm in length is made at the wrist joint; the fracture fragments are reduced with fully threaded headless cannulated compression screws. Repair stability is assessed with the C-arm fluoroscopic X-ray system. This method is theoretically feasible for distal radius fractures. The fracture fragments are fixed with fully threaded, cannulated, variable-pitch, headless compression screws, which can increase fragment stability. Therefore, the investigators hypothesize that C-arm fluoroscopy-assisted minimally invasive closed reduction will fix distal radius fractures and allow patients to perform wrist function exercises as early as possible.

Our previous studies have confirmed that minimally invasive closed reduction and internal fixation with fully threaded headless cannulated compression screws has precise therapeutic effects for distal radius fractures. This method can improve wrist function, and has therapeutic effects similar to those of conventional open reduction and internal fixation with titanium plates. The results of these previous studies are shown in Table 1. However, it is not clear whether minimally invasive closed reduction and internal fixation with fully threaded headless cannulated compression screws has advantages over conventional open reduction and internal fixation with titanium plates for distal radius fracture repair.

In this study, the investigators hypothesized that minimally invasive closed reduction and internal fixation with fully threaded headless cannulated compression screws provides better stability than conventional methods, and can effectively promote the early recovery of wrist function. Under conditions of no cutting of fracture fragments, no blood supply compromise in the fracture fragments, and no destruction of the local microenvironment, and with C-arm fluoroscopy assistance, the investigators will perform minimally invasive closed reduction, pressurizing the fracture fragments with fully threaded headless cannulated compression screws, and will investigate whether this method of distal radius fracture repair provides satisfactory stability and allows early wrist function recovery.

Safety assessment Adverse events should be accurately recorded, including time of onset, severity, duration, and measures taken. The known possible adverse events include bone nonunion, displaced fracture, wrist joint pain, Sudeck's syndrome, primary or secondary tendon injury, shoulder-hand syndrome, traumatic arthritis of the wrist joint, implant failure, malunion, infection, septicemia, and thrombosis.

Any of the following will be considered a severe adverse event: death, prolonged hospital stay, mutilation, fatal reaction, or teratogenicity. Any adverse event occurring during the trial will be reported to the researchers in charge and to the ethics committee within 24 hours.

Data management Data from the trial will be kept in a secure, locked storage area with limited access for later review by a biostatistician, a researcher in charge.

Statistical analysis All data will be statistically processed with SPSS 11.0 software (SPSS, Chicago, IL, USA). Normally distributed measurement data will be expressed as mean and SD. Non-normally distributed measurement data will be expressed as lower quartile (q1), median, and upper quartile (q3). The numeration data will be expressed as constituent ratios. The Mann-Whitney U non-parametric test will be used to compare age and course of disease between the experimental and control groups. The chi-square test will be used to compare sex differences between the two groups. The Mann-Whitney U non-parametric test will also be used to compare imaging parameters (for example, angle, height, and length), PRWE scores, healing time of fracture, and VAS scores. The chi-square test will also be used to compare the effective rate between the two groups. An alpha level of 0.05 (two-sided) will be considered statistically significant. ;


Study Design

Allocation: Randomized, Endpoint Classification: Safety Study, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Investigator), Primary Purpose: Treatment


Related Conditions & MeSH terms


NCT number NCT02784678
Study type Interventional
Source Shenyang Medical College
Contact Zhi Li, Master
Phone 8618002479373
Email zhili_chsmc@sina.com
Status Not yet recruiting
Phase N/A
Start date June 2016
Completion date June 2018

See also
  Status Clinical Trial Phase
Recruiting NCT05736068 - Is Casting of Displaced Pediatric Distal Forearm Fractures Non-inferior to Reduction in General Anesthesia? N/A
Completed NCT04554472 - Usefulness of Intraoperative Ultrasound in a Volar Plate Distal Radius Fixation
Completed NCT03613922 - Effects of Early Manual Therapy on Functional Outcomes After Volar Plating of Distal Radius Fractures N/A
Completed NCT01823692 - Evaluating Validity of Ultrasonography in Determining Distal Radius Fracture Reduction Phase 2
Completed NCT02286661 - Short-Arm Casting Effective in Type A2 Fractures in the Distal Radius N/A
Completed NCT01062997 - Volar Locked Plating Versus Bridging External Fixation N/A
Not yet recruiting NCT04100317 - Spanning Bridged Plate in Comminuted Distal Radius Fractures
Recruiting NCT04976335 - Quantitative and Clinical Assessment of Flexor Tendon Gliding Following Application of a Bioresorbable Hydrogel: A Prospective, Randomized Study in Patients Undergoing Distal Radius Fracture Repair N/A
Completed NCT03635060 - Distraction Osteogenesis for Distal Radius Fractures vs. Volar Plating N/A
Not yet recruiting NCT05095415 - Occupational Therapy Pre-operative Education in the Orthopedic Hand Setting N/A
Terminated NCT02744352 - Single Shot vs Catheter Infraclavicular Brachial Plexus Block After Distal Radius Fracture Repair N/A
Completed NCT05558306 - Radiological vs Clinical Outcome in DRF N/A
Completed NCT01778673 - Cortical Comminution and Intra-articular Involvement in Distal Radius Fractures Can Predict Radiological Outcome. A Prospective Multicenter Study N/A
Active, not recruiting NCT03349216 - Bier's Block Versus Systemic Analgesia Phase 2
Completed NCT04357470 - Manual Dexterity in Ulnar Styloid Fracture Patients N/A
Completed NCT05360836 - The Effect of Motor Imagery in Patients With Radius Distal End Fracture N/A
Recruiting NCT02957240 - Graded Motor Imagery for Women at Risk for Developing Type I CRPS Following Closed Treatment of Distal Radius Fractures N/A
Completed NCT03240471 - Cast OFF Trial: One Versus Four-five Weeks of Plaster Cast Immobilization N/A
Terminated NCT04089709 - Well-arm Exercise in Distal Radius Fractures N/A
Completed NCT05623865 - The Effect of Kinesio Taping on Edema Control and Wrist Functions in Conservatively Followed Distal Radius Fractures. N/A