Clinical Trials Logo

Diamond-Blackfan Anemia clinical trials

View clinical trials related to Diamond-Blackfan Anemia.

Filter by:

NCT ID: NCT01362595 Completed - Clinical trials for Diamond Blackfan Anemia

Pilot Phase I/II Study of Amino Acid Leucine in Treatment of Patients With Transfusion-Dependent Diamond Blackfan Anemia

LeucineDBA
Start date: June 2013
Phase: Phase 1/Phase 2
Study type: Interventional

This study will determine the safety and possibility of giving the amino acid, leucine, in patients with Diamond Blackfan anemia(DBA)who are on dependent on red blood cell transfusions. The leucine is expected to produce a response in patients with DBA to the point where red blood cell production is increased. Red cell transfusions can then be less frequent or possibly discontinued. The investigators will study the side effects, if any, of giving leucine to DBA patients. Leucine levels of leucine will be obtained at baseline and during the study. The drug leucine will be provided in capsule form and taken 3 times a day for a total of 9 months.

NCT ID: NCT01319851 Terminated - Sickle Cell Disease Clinical Trials

Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation

Start date: September 2010
Phase: N/A
Study type: Interventional

Allogeneic blood and marrow transplantation remains the only viable cure for children who suffer from many serious non-malignant hematological diseases. Transplantation, however, carries a high risk of fatal complications. Much of the risk stems from the use of high dose radiation and chemotherapy for conditioning, the treatment administered just prior to transplant that eliminates the patients' marrow and immune system, effectively preventing rejection of the donors' cells. Attempts to make blood and marrow transplantation safer for children with non-malignant diseases by using lower doses of radiation and chemotherapy have largely failed because of a high rate of graft rejection. In many such cases, it is likely that the graft is rejected because the recipient is sensitized to proteins on donor cells, including bone marrow cells, by blood transfusions. The formation of memory immune cells is a hallmark of sensitization, and these memory cells are relatively insensitive to chemotherapy and radiation. Alefacept, a drug used to treat psoriasis, on the other hand, selectively depletes these cells. The investigators are conducting a pilot study to begin to determine whether incorporating alefacept into a low dose conditioning regimen can effectively mitigate sensitization and, thereby, prevent rejection of allogeneic blood and marrow transplants for multiply transfused children with non-malignant hematological diseases.

NCT ID: NCT01114776 Completed - Sickle Cell Disease Clinical Trials

Multi-Center Study of Iron Overload: Pilot Study

MCSIO
Start date: November 1, 2009
Phase:
Study type: Observational

The purpose of this study is to initiate pilot studies to demonstrate that a sufficient number of iron-overloaded thalassemia, SCD and DBA populations with similar duration of chronic transfusion, and age at start of transfusions would be available for a confirmatory study and to validate that proposed multicenter MRI and biochemical studies can be completed. The study will examine the hypothesis that a chronic inflammatory state in Sickle Cell Disease (SCD) leads to hepcidin- and cytokine-mediated iron withholding within the RES (reticuloendothelial system), lower plasma NTBI (non transferrin bound iron) levels, less distribution of iron to the heart in SCD.

NCT ID: NCT00957931 Completed - Sickle Cell Disease Clinical Trials

Allo-HCT MUD for Non-malignant Red Blood Cell (RBC) Disorders: Sickle Cell, Thal, and DBA: Reduced Intensity Conditioning, Co-tx MSCs

Start date: March 2009
Phase: Phase 2
Study type: Interventional

The main purpose of this project is to cure patients with high risk Sickle cell disease and other red cell disorders including thalassemia and diamond-blackfan anemia by bone marrow transplantation. The patients enrolled in this study will be those who lack matched sibling donors and therefore have no other option but to undergo bone marrow transplantation using matched but unrelated bone marrow or umbilical cord blood from the national marrow donor program registry. Since bone marrow transplantation for these disorders using matched unrelated donors has two major problems i.e. engraftment, or , the process of new marrow being accepted and allowed to grow in the the patient; and graft-versus-host disease, or the process where the new marrow "rejects" the host or the patient, this study has been devised with methods to overcome these two problems and thus make transplantation from unrelated donors both successful in terms of engraftment and safe in terms of side effects, both acute and long term. In order to accomplish these two goals, two important things will be done. Firstly, patients will get three medicines which are considered reduced intensity because they are not known to cause the serious organ damage seen with conventional chemotherapy. These medicines, however, do cause intense immune suppression so these can cause increased infections. Secondly, in addition to transplantation of bone marrow from unrelated donors, patients will also transplanted with mesenchymal stromal cells derived from the bone marrow of their parents. Mesenchymal stromal cells are adult stem cells that are normally found in the bone marrow and are thought to create the right background for the blood cells to grow. They have been shown in many animal and human studies to improve engraftment. In addition, they have a special property by which they prevent and are now even considered to treat graft versus host disease. Therefore, by using a reduced intensity chemotherapy regimen before transplant and transplanting mesenchymal stromal cells, we hope to improve engraftment while at the same time decrease the potential for severe side effects associated with a conventional transplant which uses extremely high doses of chemotherapy.

NCT ID: NCT00673608 Completed - Clinical trials for Myelodysplastic Syndromes

Magnetic Resonance Imaging (MRI) Assessments of the Heart and Liver Iron Load in Patients With Transfusion Induced Iron Overload

Start date: November 2007
Phase: Phase 4
Study type: Interventional

This study will evaluate the change in cardiac iron load over a 53 week period measured by MRI in 2 cohorts of patients

NCT ID: NCT00305708 Completed - Leukemia Clinical Trials

Busulfan, Antithymocyte Globulin, and Fludarabine Followed By a Donor Stem Cell Transplant in Treating Young Patients With Blood Disorders, Bone Marrow Disorders, Chronic Myelogenous Leukemia in First Chronic Phase, or Acute Myeloid Leukemia in First Remission

Start date: August 2000
Phase: Phase 1/Phase 2
Study type: Interventional

RATIONALE: Drugs used in chemotherapy, such as busulfan and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. A donor peripheral blood, bone marrow , or umbilical cord blood transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before the transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the side effects of busulfan, antithymocyte globulin, and fludarabine when given together with a donor stem cell transplant in treating young patients with blood disorders, bone marrow disorders, chronic myelogenous leukemia in first chronic phase, or acute myeloid leukemia in first remission.

NCT ID: NCT00301834 Completed - Leukemia Clinical Trials

Alemtuzumab, Fludarabine, and Busulfan Followed By Donor Stem Cell Transplant in Treating Young Patients With Hematologic Disorders

Start date: January 2005
Phase: Phase 2
Study type: Interventional

RATIONALE: Monoclonal antibodies, such as alemtuzumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as fludarabine and busulfan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. A peripheral stem cell, bone marrow , or umbilical cord blood transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine together with methotrexate and methylprednisolone may stop this from happening. PURPOSE: This phase II trial is studying how well giving alemtuzumab together with fludarabine and busulfan works when given before donor stem cell transplant in treating young patients with hematologic disorders.

NCT ID: NCT00290628 Terminated - Lymphoma Clinical Trials

Donor Umbilical Cord Blood Transplant in Treating Patients With Hematologic Cancer

Start date: October 1999
Phase: N/A
Study type: Interventional

RATIONALE: Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from a related or unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow to make stem cells, red blood cells, white blood cells, and platelets. PURPOSE: This clinical trial is studying how well donor umbilical cord blood transplant works in treating patients with hematologic cancer.

NCT ID: NCT00244010 Completed - Anemia, Aplastic Clinical Trials

Partially Matched Stem Cell Transplantation for Patients With Refractory Severe Aplastic Anemia or Refractory Cytopenias

Start date: October 2005
Phase: N/A
Study type: Interventional

Due to an overall and disease free survival of 85% to 100%, allogeneic blood or bone marrow stem cell transplantation using an HLA matched sibling donor is the therapy of choice for patients with severe aplastic anemia (SAA). Unfortunately, only about 25% of patients have such a donor. For patients with SAA lacking a matched sibling donor, immunosuppressive therapy is the current treatment of choice. Approximately 70% of these patients have a complete or partial response to immunosuppressive therapy, achieving transfusion independence and/or growth factor independence. For the approximately 30% of patients who do not respond to immunosuppressive therapy or experience recurrence, alternative donor (matched unrelated, partially matched family member) transplantation is a treatment option. However, graft rejection and graft-versus-host-disease (GVHD) are significant barriers to success, decreasing event-free survival to 30% to 50%. This study offers stem cell transplantation using a partially matched family member (haploidentical) donor to those patients with no available HLA-matched sibling or matched unrelated donor. In an attempt to reduce GVHD and regimen-related toxicity while maintaining adequate engraftment, we plan to infuse a highly purified stem cell graft. The Miltenyi Biotec CliniMACS CD3 depletion system will be used to derive a defined allogeneic graft highly enriched for CD34+ hematopoietic cells and depleted of CD3+ T-lymphocytes from G-CSF mobilized, donor-derived peripheral blood stem cells. Patients 21 years of age and younger with refractory cytopenias are also eligible for this protocol as there are no other potentially curative therapies currently available for these conditions. The primary objective of this study is to evaluate the safety of transplantation using a haploidentical donor product engineered to targeted cell counts using the investigational CliniMACS device for patients with refractory severe aplastic anemia (SAA) or refractory cytopenias. The treatment plan would be considered unsafe if we can find this type of procedure is associated with a significantly higher treatment failure rate. Treatment failure is defined as any occurrence of the following events, overall grade III-IV acute GVHD, graft failure or death due to any cause within 100 days after transplant.

NCT ID: NCT00235391 Completed - Sickle Cell Disease Clinical Trials

Expanded Access of Deferasirox to Patients With Congenital Disorders of Red Blood Cells and Chronic Iron Overload

Start date: October 2005
Phase: Phase 3
Study type: Interventional

This is an open-label, non-randomized, multi-center trial designed to provide expanded access of deferasirox to patients with congenital disorders of red blood cells and chronic iron overload from blood transfusions who cannot adequately be treated with locally approved iron chelators.