Clinical Trials Logo

Clinical Trial Summary

This study proposes to carefully examine the hypothesis that human inducible pluripotent stem cells (iPSCs) can be effectively employed as a future therapeutic option for individuals with diabetic retinopathy and macular ischemia. iPSCs will be generated from the peripheral blood cells of subjects with diabetes and age matched controls. The human iPSC cells will be used to generate mesoderm cells for injection into the vitreous cavity of diabetic rodents and primate eyes. The ability of mesoderm cells to generate endothelial cells and pericytes in areas of degenerated capillaries will be examined. The human iPSCs will also be used to generate hematopoietic CD34+CD45+ cells. The combination of CD34+CD45+ cells derived from iPSCs and iPSC derived mesoderm will be examined in combination for their potentially beneficial effect to enhance the vessel formation.


Clinical Trial Description

Vascular complications due to diabetes mellitus (DM) are the result of sustained vascular injury with insufficient vascular repair. In chronic diabetes, vascular reparative mechanism can be lost resulting in development of microvascular complications (MVC), such as diabetic retinopathy (DR). We assessed the reparative function of progenitor cells that circulate in the peripheral blood of diabetic individuals and found that the vascular wall-derived progenitor cells, endothelial colony forming cells (ECFCs), were depleted in diabetics with MVC. Bone marrow-derived progenitor cells, CD45+CD34+ were dysfunctional in diabetics with MVC. We found that human inducible pluripotent stem cells (hiPSCs)-derived ECFCs displayed the ability to form functional and durable blood vessels in vivo and conferred therapeutic revascularization by connecting with and remaining integrated with host rodent vessels long term. We characterized a mesoderm subset (SSEA5-KNA+ cells) generated from hiPSCs that gives rise to ECFCs. Finally, we used hiPSCs to generate CD34+CD45+ cells and tested the impact of co-administration of these cells with ECFCs within the vitreous. The addition of CD34+CD45+ cells with ECFCs resulted in the enhanced survival, function and reparative ability of the ECFCs. This beneficial effect was mediated by reducing retinal oxidative stress and inflammation. These novel and paradigm shifting findings led us to hypothesize: the hiPSC-derived-mesoderm subset (SSEA5-KNA+) can be utilized for long term revascularization of vasodegenerative capillaries and their reparative action can be further enhanced by coinjection of CD34+CD45+ cells that provide anti-oxidant and anti-inflammatory effects. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03403699
Study type Observational
Source University of Alabama at Birmingham
Contact Jennifer Moorer
Phone 205 325 8674
Email jmoorer@uabmc.edu
Status Recruiting
Phase
Start date January 11, 2018
Completion date January 31, 2025

See also
  Status Clinical Trial Phase
Completed NCT03660384 - Silicone Oil Versus Gas in PDR Patients Undergoing Vitrectomy N/A
Completed NCT03660371 - ILM Peeling in PDR Patients Undergoing PPV for VH N/A
Completed NCT03660345 - PPV With Internal Limiting Membrane Peeling for Treatment-Naïve DME Phase 3
Completed NCT04905459 - ARDA Software for the Detection of mtmDR
Active, not recruiting NCT04271709 - Manhattan Vision Screening and Follow-Up Study (NYC-SIGHT) N/A
Recruiting NCT03713268 - Intraoperative OCT Guidance of Intraocular Surgery II
Completed NCT05022615 - Comparing 3 Imaging Systems
Completed NCT00385333 - Metabolic Mapping to Measure Retinal Metabolism Phase 2
Recruiting NCT04101604 - Biomarkers of Common Eye Diseases
Completed NCT03702374 - Combined Antioxidant Therapy on Oxidative Stress, Mitochondrial Dysfunction Markers in Diabetic Retinopathy Phase 3
Completed NCT01908816 - An Open-label Extended Clinical Protocol of Ranibizumab to Evaluate Safety and Efficacy in Rare VEGF Driven Ocular Diseases. Phase 3
Completed NCT04009980 - Long-term Retinal Changes After Topical Citicoline Administration in Patients With Mild Signs of Diabetic Retinopathy in Type 1 Diabetes Mellitus. N/A
Completed NCT02924311 - Routine Clinical Practice for Use of Intravitreal Aflibercept Treatment in Patients With Diabetic Macular Edema
Not yet recruiting NCT06257082 - Video-based Patient Education Intervention for Diabetic Eye Screening in Latinx Communities N/A
Not yet recruiting NCT05452993 - Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography N/A
Withdrawn NCT02812030 - Aflibercept for Retinopathy in the Real World N/A
Completed NCT02391558 - Clinical Evaluation of Noninvasive OCT Angiography Using a Zeiss OCT Prototype to Compare to Fluorescein Angiography N/A
Active, not recruiting NCT02330042 - OCT Biomarkers for Diabetic Retinopathy
Active, not recruiting NCT02353923 - OcuStem Nutritional Supplement in Diabetic Patients With Mild to Moderate Non-proliferative Retinopathy N/A
Completed NCT02390245 - Philadelphia Telemedicine Glaucoma Detection and Follow-Up Study N/A