Clinical Trials Logo

Clinical Trial Summary

Diabetic peripheral neuropathy(DPN) is a length dependent axonal neuropathy that affects at least 50% of patients with diabetes mellitus. DPN is often asymptomatic during the early stages of diabetes ,however, once symptoms and overt deficits have developed, it cannot be reversed. Early diagnosis of neuropathy is important because early diagnosis and timely intervention might prevent the development and progression of diabetic neuropathy.Though glycemic control has been shown to prevent the progression of diabetic microvascular complications including diabetic peripheral neuropathy in Type I DM, such strict glycemic control has not shown to improve diabetic peripheral neuropathy in Type 2 DM. There are only few animal studies conducted so far which have shown that the use of SGLT2 inhibitors prevents the progression of diabetic peripheral neuropathy.Thus the investigators postulate that the use of SGLT2 inhibitor in patients with Type 2 Diabetes Mellitus might be beneficial in the prevention of progression of diabetic peripheral neuropathy as well as reverse it.


Clinical Trial Description

Diabetic peripheral neuropathy is a length dependent axonal neuropathy that affects at least 50% of patients with diabetes mellitus. It is characterized by sensory loss and pain that initially affects small unmyelinated C fibers which is followed by involvement of the large myelinated fibers as diabetes progresses. DPN is often asymptomatic during the early stages of diabetes ,however, once symptoms and overt deficits have developed, it cannot be reversed. Early diagnosis of neuropathy is thus important because early diagnosis and timely intervention might prevent the development and progression if diabetic neuropathy and might provide us with a means to identify patients at high risk for future complications of DPN which includes risk of foot ulcers and lower limb amputation. Methods to quantify neuropathy include clinical scores based on symptoms and neurological tests, quantitative sensory testing, electrophysiological measurements, in the form of nerve conduction studies and intraepidermal nerve fiber density in skin biopsy specimens. The neurological examination involves an assessment, such as modified neuropathy disability score, a composite score that assesses touch, temperature and vibration perception and reflexes, which require expert clinical judgement, a strong element of subjectivity and hence poor reproducibility. Neurophysiology is objective and reproducible and is currently considered to be the most reliable measurements for confirming the diagnosis of diabetic neuropathy. However, these measures mainly assess large nerve fibers, making them less sensitive to early DPN,which is more likely to involve the small fibers to begin with. Objective measures are thus required to accurately determine nerve pathology to detect early stages of DPN, which may be more susceptible to intervention than late-stage sequelae. Small fibers, which constitute 70-90% of peripheral nerve fiber, may be measured in skin biopsies by assessing intraepidermal nerve fiber density, which is considered to be the gold standard for the evaluation of small fibers damage. Indeed, the European Federation of the Neurological Societies and the Peripheral Nerve Society endorse intraepidermal nerve fiber quantification to confirm the clinical diagnosis of small fiber neuropathy with a strong (Level A)recommendation. Recently, corneal confocal microscopy (CCM), a noninvasive modality for the study of the human cornea, has emerged as a promising technique for the detection of small nerve fiber alterations. CCM is a rapid non-invasive imaging technique for the quantitative assessment of small fiber damage. Several studies have shown that it has good diagnostic utility for sub-clinical DPN, predicts incident DPN and correlates with other measures of neuropathy . Furthermore, automated quantification of corneal nerve parameters allows rapid, unbiased and objective assessment of small fiber damage with comparable diagnostic capability to intraepithelial nerve fiber density (IENFD). Recent data also suggest that CCM shows good reproducibility and could be useful to document nerve regeneration after treatment and simultaneous pancreas and kidney transplantation. There is currently no Food and Drug Administration (FDA) approved therapy to prevent or reverse human DPN. The current management approach focuses on reasonable glycemic control, and management of associated pain. Sodium-glucose cotransporter 2 (SGLT2) inhibitors as oral hypoglycemic agents have been approved for treating type 2 diabetes mellitus (T2DM). The insulin-independent action mechanism and extra-metabolic benefits of these agents have encouraged ongoing preclinical and clinical trials for evaluating the efficacy and safety of SGLT2 inhibitors. In addition to glucose-lowering effects without hypoglycemia, SGLT2 inhibitors retard the development and progression of diabetic complications. However, it is uncertain whether this effect of SGLT2 inhibitors is due to their glucose-lowering effect or not. In addition, unlike diabetic nephropathy, the effects of SGLT2 inhibitors on diabetic peripheral neuropathy are unexplored. To date, only three studies regarding the effects of SGLT2 inhibitors for DPN in T2DM animal models are reported. Investigators evaluated neuronal effects in terms of simple functional parameters, such as motor nerve conduction velocity and tail flick test. Results of these studies verified the beneficial effects of SGLT2 inhibitors for DPN, and these effects were considered to indirect effects of the improvement of hyperglycemia. Since no human studies have yet been conducted using SGLT2 inhibitors in the prevention and progression of diabetic neuropathy, hence, investigators plan to conduct a randomized controlled trial evaluating the efficacy of dapagliflozin in diabetic peripheral neuropathy ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05162690
Study type Interventional
Source Postgraduate Institute of Medical Education and Research
Contact Ashu Rastogi, MD, DM
Phone 9781001046
Email rastogi.ashu@pgi.ac.in
Status Recruiting
Phase Phase 2/Phase 3
Start date May 1, 2022
Completion date December 31, 2023

See also
  Status Clinical Trial Phase
Recruiting NCT04638556 - Effect of Circulating lncRNAs on Type 2 Diabetic Peripheral Neuropathy
Completed NCT05580705 - Effects of Vibration Therapy in Addition to Routine Physical Therapy in Patients With Diabetic Neuropathy N/A
Terminated NCT01620775 - MR(Magnetic Resonance) Imaging of Neurotransmitters in Chronic Pain N/A
Completed NCT02127762 - The Effect of Mindfulness Based Stress Reduction in Patients With Painful Diabetic Peripheral Neuropathy N/A
Completed NCT00835757 - Diffusion Tensor Imaging of Sural Nerves in Diabetic Peripheral Neuropathy N/A
Recruiting NCT00553592 - Double Blind RCT of Bicifadine SR in Outpatients With Chronic Neuropathic Pain Associated With Diabetes Phase 2
Recruiting NCT05863793 - Clinical Study of Acupuncture in the Treatment of Diabetic Peripheral Neuropathy N/A
Withdrawn NCT05041816 - Peripheral Nerve Responses to Focal Vibration and Implications in Pain and Mobility for Patients With Diabetic Peripheral Neuropathy N/A
Recruiting NCT06074562 - A Study of LY3556050 in Adult Participants With Diabetic Peripheral Neuropathic Pain Phase 2
Recruiting NCT04457531 - LiuWeiLuoBi Granule for the Treatment of Diabetic Peripheral Neuropathy Early Phase 1
Completed NCT02947828 - Polyneuropathy in Diabetes Mellitus Type 2
Completed NCT02056431 - Balancing Treatment Outcomes and Medication Burden Among Patients With Symptomatic Diabetic Peripheral Neuropathy N/A
Completed NCT01681290 - Safety and Efficacy of CBX129801 in Patients With Type 1 Diabetes Phase 2
Completed NCT01474772 - Efficacy and Safety Study of Pregabalin in the Treatment of Pain on Walking in Patients With Diabetic Peripheral Neuropathy (DPN) Phase 3
Completed NCT01086150 - Use of Topical Lidocaine to Reduce Pain in Patients With Diabetic Neuropathy Phase 2/Phase 3
Completed NCT03447756 - Titration Study of ABX-1431 Phase 1
Completed NCT04688671 - Efficacy and Safety of ETX-018810 for the Treatment of Diabetic Peripheral Neuropathic Pain Phase 2
Completed NCT04984044 - Effect of Vitamin D in Patients With Diabetic Peripheral Neuropathy to Alleviate Pain and Improvement of Symptoms N/A
Completed NCT06130917 - Effects of Multisystem Exercise on Balance, Postural Stability, Mobility and Pain in Patients With DPN. N/A
Completed NCT01496365 - Treatment of Neuropathic Pain Associated With Diabetic Peripheral Neuropathy Phase 2