Clinical Trials Logo

Clinical Trial Summary

Dried fruits show promising potential for the management of blood glucose. Previous trials have reported beneficial effects of raisins on post-prandial glucose and insulin responses in healthy individuals when compared with white bread. However, to date there is limited data evaluating the potential beneficial effects of other dried fruits (i.e. sultanas, dates and apricots). It is also unclear whether dried fruits can be used to lower the postprandial glycemic responses to high-GI carbohydrate foods by either displacing available carbohydrate (displacement effect) or providing 'catalytic' doses of fructose ('catalytic' fructose effect). To address these questions, the investigators propose to assess the GI of 4 common types of dried fruit (raisins, sultanas, dates, apricots) (GI effect) and their ability to decrease the postprandial glycemic response to white bread by either partially displacing available carbohydrate (displacement effect) or by providing a 'catalytic' dose of fructose ('catalytic' fructose effect).


Clinical Trial Description

BACKGROUND:

All studies assessing the glycemic index (GI) of traditional dried fruit show that they are low-to-moderate GI foods and that the insulin response is proportional to their GI. A recent study compared the glycemic response of two doses of raisins (28 and 69g) versus white bread showing that both doses of raisins significantly reduced post-prandial glucose and insulin levels compared with white bread. However, the effect of combining dried fruits with high-GI carbohydrate foods has never been addressed. The potential impact of combining nuts (i.e. pistachios) and high-GI carbohydrate foods has already analyzed with positive results. The investigators found that a dose of 56g of pistachios consumed alone had a minimal effect on post-prandial glycemia, but when taken with a high-carbohydrate meal attenuated the relative glycemic response. Although foods with high fibre content generally have a low-GI, other factors also contribute to a food's glycemic response. Factors thought to contribute to the glycemic response of dried fruits include the viscous texture when chewed; their whole food matrix; the presence of phenolic compounds and organic acids and the type of sugar present. In the case of dried fruit, about 50% fructose (low-GI) is present. Therefore, the consumption of dried fruit with high-carbohydrate foods may lead to glycemic control benefits by lowering the GI of a food. In addition to potentially lowering the GI of a food, dried fruits may also affect glycemic control by providing 'catalytic' doses of fructose. Fructose, through its metabolite fructose-1-P, has been shown to have "catalytic" effects on hepatic glucose metabolism by inducing glucokinase activity in hepatocytes. In specific, fructose-1-P displaces fructose-6-P from glucokinase's regulatory binding protein in the nucleus causing the release of glucokinase from its regulatory protein, allowing it to translocate to the cytosol, resulting in increased phosphorylation of glucose. Infusion studies in humans have shown that this mechanism relates to a ~30% decrease in hepatic glucose output under hyperglycemic conditions in participants with type 2 diabetes (T2D) and a ~3-fold increase in glycogen synthesis by C13-nuclear magnetic resonance (NMR) spectroscopy under euglycemic conditions in healthy people. Clinical translation of these findings has proven promising. Catalytic doses of fructose at 7.5g and 10g have been shown to decrease the postprandial glycemic responses to high GI meals (oral glucose, maltodextrins, or mashed potatoes) from ~15-30% in healthy participants and those with pre-diabetes or diabetes . These acute effects have been shown to be sustainable over the longer term as well. Systematic reviews and meta-analyses of controlled feeding trials have shown that small doses of fructose in exchange for other carbohydrates decreases HbA1c at a level which exceeds the clinically meaningful threshold of 0.3% proposed by the Federal Drug Administration (FDA) for the development of new oral anti-hyperglycemic agents. Therefore, the consumption of dried fruit with high-carbohydrate foods may lead to glycemic control benefits by acting as a vehicle for 'catalytic' doses of fructose.

OBJECTIVES:

To investigate the effect of using dried fruit to modify the glycemic response of high GI foods, the investigators propose the following 3 objectives:

1. To assess the GI of 4 common types of dried fruit (raisins, sultanas, dates, apricots) (GI effect)

2. To assess the ability of the 4 common types of dried fruit (raisins, sultanas, dates, apricots) to decrease the postprandial glycemic response to white bread by displacing half of the available carbohydrate (displacement effect)

3. To assess the ability of the 4 common types of dried fruit (raisins, sultanas, dates, apricots) to decrease the postprandial glycemic response to white bread by providing a 'catalytic' dose (7.5g) of fructose ('catalytic' fructose effect)

PARTICIPANTS:

The investigators will include male or non-pregnant female participants aged 18-75 years and who are otherwise healthy.

DESIGN:

The trial will use a randomized multiple crossover acute-feeding design in which each participants acts as their own control.

PROTOCOL:

The protocol will follow ISO 26642:2010(en), "Food products — Determination of the glycaemic index (GI) and recommendation for food classification". All participants will complete all test and control foods in the study series. An individual participant will normally complete 1 to 3 tests per week with at least one day in between. Participants will be studied between 7:00 and 9:30am after an overnight fast of 10-14h. On each test occasion the subject will be weighed, and two fasting blood samples will be obtained at -5 minute (min) intervals by finger-prick. Then the subject will start to consume a test meal. At the first bite a timer will be started and additional blood samples will be taken at 15, 30, 45, 60, 90 and 120 min after the start of the meal. Before and during the test, a blood glucose test record will be filled out with the subject's initials, ID number, date, body weight, test meal, time they start to eat, time it took to eat, time and composition of last meal, and any unusual activities. During the 2 hours the test subjects will remain seated.

BLOOD SAMPLES:

Each finger-prick sample consists of a total of 2-3 drops of blood obtained by finger prick and will be divided into two separate vials. The 2 to 3 drops of capillary blood will be collected into flat-bottomed 5ml plastic tubes with a push cap containing a small amount of sodium fluoride and potassium oxalate as an anticoagulant and preservative. These samples will be used for analyzing capillary blood glucose levels. The finger-prick samples for glucose analysis will initially be placed in the refrigerator and at the end of two hours, placed in a -20°C freezer until analysis which will be performed within a week. Glucose analysis will be done using a YSI model 2300 STAT analyzer (Yellow Springs, OH). Each subject will participate in a total of 15 separate test meals: 3 white bread control meals and 3 dried fruit treatments (dried fruit - GI effect, dried fruit -displacement effect, and dried fruit - 'catalytic' fructose effect) for each of the 4 dried fruits (raisins, sultanas, dates and apricots) (Figure 1). The order of the test meals will be randomized by a coordinator blinded to the treatment allocation. Test meals will be separated by a minimum of a 1-day washout.

STATISTICAL ANALYSES:

Blood glucose areas will be calculated as the incremental area under the curve (iAUC) using the trapezoidal rule with peak heights as maximal incremental rises in glucose. The glycemic indices of the test meals will be calculated using the 3 bread meals as the reference food. Pairwise differences in GI between the white bread control and the 3 dried fruit treatments (dried fruit - GI effect, dried fruit - GI displacement effect, and dried fruit - 'catalytic' fructose effect) for each of the 4 dried fruits (raisins, sultanas, dates and apricots) will be assessed by the Dunnett's test in SAS (SAS Inst. Version 8.2; Gary, NC).

EXPECTED RESULTS:

The investigators expect that dried fruit will have a low-to-moderate GI and will reduce postprandial glycemic responses when consumed in combination with high-GI foods in comparison to high-GI foods alone. The specific aims of our study are: (1) to quantify the GI of 4 different types of dried fruit (raisins, sultanas, dates, apricots) (GI effect); and (2) to assess the ability of these 4 dried fruits to decrease the postprandial glycemic response to white bread by either partially displacing available carbohydrate (displacement effect); or (3) by providing a 'catalytic' dose of fructose ('catalytic' fructose effect). The proposed study will help to identify mechanisms by which dried fruits can improve postprandial glycemia when consumed in combination with high-GI carbohydrate foods by assessing a glucose displacement mechanism along with a 'catalytic' fructose mechanism. The results will stimulate important industry innovation and improve the design of future clinical investigations that will ultimately lead to the use of dried fruits as an effective tool to modify the glycemic response of high carbohydrate foods and with it longer-term glycemic control in people with or at risk for type 2 diabetes. ;


Study Design

Allocation: Randomized, Intervention Model: Crossover Assignment, Masking: Single Blind (Investigator)


Related Conditions & MeSH terms


NCT number NCT02960373
Study type Interventional
Source University of Toronto
Contact Effie Viguiliouk, MSc
Phone 416-867-7460
Email effie.viguiliouk@mail.utoronto.ca
Status Not yet recruiting
Phase N/A
Start date November 2016

See also
  Status Clinical Trial Phase
Completed NCT03743779 - Mastering Diabetes Pilot Study
Completed NCT03786978 - Pharmaceutical Care in the Reduction of Readmission Rates in Diabetes Melitus N/A
Completed NCT01804803 - DIgital Assisted MONitoring for DiabeteS - I N/A
Completed NCT05039970 - A Real-World Study of a Mobile Device-based Serious Health Game on Session Attendance in the National Diabetes Prevention Program N/A
Completed NCT04507867 - Effect of a NSS to Reduce Complications in Patients With Covid-19 and Comorbidities in Stage III N/A
Completed NCT04068272 - Safety of Bosentan in Type II Diabetic Patients Phase 1
Completed NCT03243383 - Readmission Prevention Pilot Trial in Diabetes Patients N/A
Completed NCT03730480 - User Performance of the CONTOUR NEXT and CONTOUR TV3 Blood Glucose Monitoring System (BGMS) N/A
Recruiting NCT02690467 - Efficacy, Safety and Acceptability of the New Pen Needle 34gx3,5mm. N/A
Completed NCT02229383 - Phase III Study to Evaluate Safety and Efficacy of Added Exenatide Versus Placebo to Titrated Basal Insulin Glargine in Inadequately Controlled Patients With Type II Diabetes Mellitus Phase 3
Completed NCT06181721 - Evaluating Glucose Control Using a Next Generation Automated Insulin Delivery Algorithm in Patients With Type 1 and Type 2 Diabetes N/A
Completed NCT05799976 - Text Message-Based Nudges Prior to Primary Care Visits to Increase Care Gap Closure N/A
Recruiting NCT04489043 - Exercise, Prediabetes and Diabetes After Renal Transplantation. N/A
Withdrawn NCT03319784 - Analysis for NSAID VS Corticosteroid Shoulder Injection in Diabetic Patients Phase 4
Completed NCT03542084 - Endocrinology Auto-Triggered e-Consults N/A
Completed NCT02229396 - Phase 3 28-Week Study With 24-Week and 52-week Extension Phases to Evaluate Efficacy and Safety of Exenatide Once Weekly and Dapagliflozin Versus Exenatide and Dapagliflozin Matching Placebo Phase 3
Recruiting NCT05544266 - Rare and Atypical Diabetes Network
Completed NCT01892319 - An International Non-interventional Cohort Study to Evaluate the Safety of Treatment With Insulin Detemir in Pregnant Women With Diabetes Mellitus. Diabetes Pregnancy Registry
Completed NCT05031000 - Blood Glucose Monitoring Systems: Discounter Versus Brand N/A
Recruiting NCT04039763 - RT-CGM in Young Adults at Risk of DKA N/A