Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT04879381
Other study ID # ANA-MUCO ( 29BRC18.0045)
Secondary ID
Status Completed
Phase
First received
Last updated
Start date March 29, 2018
Est. completion date October 5, 2018

Study information

Verified date January 2021
Source University Hospital, Brest
Contact n/a
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Recently, the respiratory microbiota characterisation of a Cystic Fibrosis (CF) patients' cohort has highlighted the potential role of anaerobes, and specially species belonging to the genus Porphyromonas, in the first P. aeruginosa colonization. The aim of this project is to describe the bacterial anaerobic population in the respiratory microbiota of a CF cohort. At the end of this study, an inventory of the anaerobic microbiota in CF respiratory samples will be establish in relation to the patients' pulmonary function and P. aeruginosa colonization status in order to speculate about the pulmonary anaerobes roles, still unknown. The innovative aspect of the ANA-MUCO study is the use of a specific sample kit designed for the study which allows preserving anaerobic bacteria in sputum according to the recommendations of the International Human Microbiome Standards (IHMS). Extended-culture and molecular approaches will be performed to identify and describe the anaerobic bacteria which could be involved in the pulmonary homeostasis in CF respiratory samples.


Description:

Cystic Fibrosis (CF) is a lethal genetic disease whose prognostic depends on the patients' respiratory impairment. Indeed, the airways microbial chronic colonization, particularly to Pseudomonas aeruginosa, leads to infectious exacerbations and to noteworthy respiratory function impairment and represents the main cause of morbidity and mortality. Nowadays, antibiotherapy is the main therapeutic solution to thwart bacterial development and to slow respiratory function degradation. However, during the disease progression, this therapeutical approach is limited by the bacteria accommodation and antibiotic resistance development. Thanks to the development of high-throughput sequencing methods, the respiratory microbiota of CF patients has been mainly described and points the way to new therapeutic approaches. It has been establish that, i) from an early age, the respiratory microbiota of CF children is modified in comparison with the healthy children one, ii) bacterial diversity decrease progressively throughout the disease evolution, iii) anaerobes represent an important part of the healthy and CF respiratory microbiota. Thus pulmonary microbiota composition could be a better disease progression indicator than the only detection of P. aeruginosa in CF respiratory samples. Furthermore, the respiratory microbiota could influence the pathogenesis through direct interactions between micro-organism/micro-organism or micro-organism/host. Recently, thanks to the respiratory microbiota characterisation of a CF patients' cohort (MUCOBIOME study, 2012-2015), the potential role of anaerobes (and particularly species belonging to the genus Porphyromonas) in the first P. aeruginosa colonization has been highlighted. Indeed, the respiratory microbiota study of 34 CF patients has revealed that if patients are deprived or lowly colonized by Porphyromonas spp., the relative risk of P. aeruginosa colonization is 3.7 fold higher. Conversely, the relative abundance's increase of Porphyromonas spp. in CF patients receiving Ivacaftor treatment is correlated with the respiratory function improvement. Thus, in addition to be used as biomarker, the investigators speculate on the fact that some strict anaerobic species, such as Porphyromonas spp., could act as CF pathogens (like P. aeruginosa) competitors and limit their setting up in the airways. The investigators see here the necessity of complementary studies in order to better characterise anaerobic bacteria in the airways. The aim of the ANA-MUCO study is to identify and describe anaerobic bacteria in sputum of a CF patients' cohort, to characterise the antibiotic resistance profiles of the anaerobic species isolated, to study the anaerobes repartition within the CF population and to evaluate the interactions between anaerobes and CF pathogens (P. aeruginosa, S. aureus, H. influenzae, …). In order to be the most exhaustive as possible in the anaerobes description, the innovative aspect of this study is the conception and the use of a specific sample kit which preserves anaerobic conditions in sputum according to the recommendations of the International Human Microbiome Standards (IHMS). Then, extended-culture and molecular approaches will be performed to identify the anaerobic bacteria which could be involved in the pulmonary homeostasis in CF respiratory samples.


Recruitment information / eligibility

Status Completed
Enrollment 101
Est. completion date October 5, 2018
Est. primary completion date October 5, 2018
Accepts healthy volunteers
Gender All
Age group N/A and older
Eligibility Inclusion Criteria: - Patients with a confirmed diagnosis of Cystic Fibrosis regardless of CFTR genotype - Persons affiliated to the social security system - Minor or major patients able to expectorate spontaneously or after induction - Consent signed by the patient or the holder of parental authority for the children Exclusion Criteria: - Persons deprived of liberty, persons under guardianship or curatorship, persons in emergency situations - Persons non affiliated to a social security system or not entitled - Pulmonary transplant patients - Refusal to participate to the study

Study Design


Related Conditions & MeSH terms


Intervention

Other:
Sputum samples
During consultation, one expectoration will be performed.

Locations

Country Name City State
France CHRU de Brest Brest
France Fondation Ildys Roscoff

Sponsors (2)

Lead Sponsor Collaborator
University Hospital, Brest Vaincre la Mucoviscidose

Country where clinical trial is conducted

France, 

References & Publications (15)

Bernarde C, Keravec M, Mounier J, Gouriou S, Rault G, Férec C, Barbier G, Héry-Arnaud G. Impact of the CFTR-potentiator ivacaftor on airway microbiota in cystic fibrosis patients carrying a G551D mutation. PLoS One. 2015 Apr 8;10(4):e0124124. doi: 10.1371/journal.pone.0124124. eCollection 2015. — View Citation

CA-SFM EUCAST [En ligne]. Société Française de Microbiologie, 2013 [consulté le 11 janvier 2018]. Available on: http://www.sfmmicrobiologie.org/UserFiles/files/casfm/CASFM2013vjuin.pdf

Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, Karaoz U, Andersen GL, Brown R, Fujimura KE, Wu B, Tran D, Koff J, Kleinhenz ME, Nielson D, Brodie EL, Lynch SV. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One. 2010 Jun 23;5(6):e11044. doi: 10.1371/journal.pone.0011044. — View Citation

Guilloux CA, Lamoureux C, Héry-Arnaud G. [Anaerobic bacteria, the unknown members of the lung microbiota]. Med Sci (Paris). 2018 Mar;34(3):253-260. doi: 10.1051/medsci/20183403014. Epub 2018 Mar 16. Review. French. — View Citation

Héry-Arnaud et al., 2017, European patent EP17306297 Methods for predicting the risk of developping pulmonary colonization/infection by Pseudomonas aeruginosa.

Héry-Arnaud G, Nowak E, Caillon J, David V, Dirou A, Revert K, Munck MR, Frachon I, Haloun A, Horeau-Langlard D, Le Bihan J, Danner-Boucher I, Ramel S, Pelletier MP, Rosec S, Gouriou S, Poulhazan E, Payan C, Férec C, Rault G, Le Gal G, Le Berre R. Evaluation of quantitative PCR for early diagnosis of Pseudomonas aeruginosa infection in cystic fibrosis: a prospective cohort study. Clin Microbiol Infect. 2017 Mar;23(3):203-207. doi: 10.1016/j.cmi.2016.11.016. Epub 2016 Nov 27. — View Citation

Keravec M, Mounier J, Guilloux CA, Fangous MS, Mondot S, Vallet S, Gouriou S, Le Berre R, Rault G, Férec C, Barbier G, Lepage P, Héry-Arnaud G. Porphyromonas, a potential predictive biomarker of Pseudomonas aeruginosa pulmonary infection in cystic fibrosis. BMJ Open Respir Res. 2019 Mar 12;6(1):e000374. doi: 10.1136/bmjresp-2018-000374. eCollection 2019. — View Citation

Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA, Lory S, Brodie EL, Lynch SV, Bohannan BJ, Green JL, Maurer BA, Kolter R. Relationship between cystic fibrosis respiratory tract bacterial communities and age, genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol. 2010 May;12(5):1293-303. doi: 10.1111/j.1462-2920.2010.02173.x. Epub 2010 Feb 23. — View Citation

Lamoureux C, Guilloux CA, Beauruelle C, Jolivet-Gougeon A, Héry-Arnaud G. Anaerobes in cystic fibrosis patients' airways. Crit Rev Microbiol. 2019 Feb;45(1):103-117. doi: 10.1080/1040841X.2018.1549019. Epub 2019 Jan 21. Review. — View Citation

Nixon GM, Armstrong DS, Carzino R, Carlin JB, Olinsky A, Robertson CF, Grimwood K. Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr. 2001 May;138(5):699-704. — View Citation

Renwick J, McNally P, John B, DeSantis T, Linnane B, Murphy P; SHIELD CF. The microbial community of the cystic fibrosis airway is disrupted in early life. PLoS One. 2014 Dec 19;9(12):e109798. doi: 10.1371/journal.pone.0109798. eCollection 2014. — View Citation

Sibley CD, Surette MG. The polymicrobial nature of airway infections in cystic fibrosis: Cangene Gold Medal Lecture. Can J Microbiol. 2011 Feb;57(2):69-77. doi: 10.1139/w10-105. Review. — View Citation

Smyth AR, Bell SC, Bojcin S, Bryon M, Duff A, Flume P, Kashirskaya N, Munck A, Ratjen F, Schwarzenberg SJ, Sermet-Gaudelus I, Southern KW, Taccetti G, Ullrich G, Wolfe S; European Cystic Fibrosis Society. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J Cyst Fibros. 2014 May;13 Suppl 1:S23-42. doi: 10.1016/j.jcf.2014.03.010. Review. — View Citation

Société Française de Microbiologie. REMIC, Référentiel en Microbiologie Médicale, 2 volumes. SFM, 2015. 856 p. ISBN 9782878050325.

Tunney MM, Field TR, Moriarty TF, Patrick S, Doering G, Muhlebach MS, Wolfgang MC, Boucher R, Gilpin DF, McDowell A, Elborn JS. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med. 2008 May 1;177(9):995-1001. doi: 10.1164/rccm.200708-1151OC. Epub 2008 Feb 8. — View Citation

* Note: There are 15 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Presence of anaerobic bacteria in sputum by culture and molecular approaches The presence of anaerobic bacteria will be evaluated by culture and molecular approaches with regard of the number of sputum collected. Inclusion ( Day 0)
See also
  Status Clinical Trial Phase
Completed NCT04696198 - Thoracic Mobility in Cystic Fibrosis Care N/A
Completed NCT00803205 - Study of Ataluren (PTC124™) in Cystic Fibrosis Phase 3
Terminated NCT04921332 - Bright Light Therapy for Depression Symptoms in Adults With Cystic Fibrosis (CF) and COPD N/A
Completed NCT03601637 - Safety and Pharmacokinetic Study of Lumacaftor/Ivacaftor in Participants 1 to Less Than 2 Years of Age With Cystic Fibrosis, Homozygous for F508del Phase 3
Terminated NCT02769637 - Effect of Acid Blockade on Microbiota and Inflammation in Cystic Fibrosis (CF)
Recruiting NCT06032273 - Lung Transplant READY CF 2: CARING CF Ancillary RCT N/A
Recruiting NCT06012084 - The Development and Evaluation of iCF-PWR for Healthy Siblings of Individuals With Cystic Fibrosis N/A
Recruiting NCT06030206 - Lung Transplant READY CF 2: A Multi-site RCT N/A
Recruiting NCT05392855 - Symptom Based Performance of Airway Clearance After Starting Highly Effective Modulators for Cystic Fibrosis (SPACE-CF) N/A
Recruiting NCT06088485 - The Effect of Bone Mineral Density in Patients With Adult Cystic Fibrosis
Recruiting NCT04039087 - Sildenafil Exercise: Role of PDE5 Inhibition Phase 2/Phase 3
Recruiting NCT04056702 - Impact of Triple Combination CFTR Therapy on Sinus Disease.
Completed NCT04058548 - Clinical Utility of the 1-minute Sit to Stand Test as a Measure of Submaximal Exercise Tolerance in Patients With Cystic Fibrosis During Acute Pulmonary Exacerbation N/A
Completed NCT04038710 - Clinical Outcomes of Triple Combination Therapy in Severe Cystic Fibrosis Disease.
Completed NCT03637504 - Feasibility of a Mobile Medication Plan Application in CF Patient Care N/A
Recruiting NCT03506061 - Trikafta in Cystic Fibrosis Patients Phase 2
Completed NCT03566550 - Gut Imaging for Function & Transit in Cystic Fibrosis Study 1
Recruiting NCT04828382 - Prospective Study of Pregnancy in Women With Cystic Fibrosis
Completed NCT04568980 - Assessment of Contraceptive Safety and Effectiveness in Cystic Fibrosis
Recruiting NCT04010253 - Impact of Bronchial Drainage Technique by the Medical Device Simeox® on Respiratory Function and Symptoms in Adult Patients With Cystic Fibrosis N/A