Clinical Trials Logo

Clinical Trial Summary

ICU survivors often suffer from long-term functional disability. An attenuated response to physical exercise in skeletal muscle after critical illness may contribute to persisting weakness. The aim of this study is to investigate the effects of resistance exercise on muscle protein synthesis in former ICU patients. The investigators hypothesize that study subjects recovering from critical illness have an impaired anabolic response to resistance exercise after ICU stay as compared to non-critically ill controls.


Clinical Trial Description

Background The debilitating impact of critical illness has been recognized for several decades. Disability related to intensive care is now described as a syndrome called ICU-acquired weakness (ICUAW). ICUAW affects up to 70% of ICU patients and is most common with higher illness severity. Patients that develop ICUAW require longer hospitalization and have a higher risk of death. Weakness may persists for several years in ICU survivors. It has significant long-term consequences, and is associated with increased health care costs, delayed return to work, and overall poor quality of life. Muscle atrophy is a major contributor to ICUAW. Critical illness is associated with a rapid loss of skeletal muscle, induced by catabolic signals from proinflammatory cytokines and hormones. The ability to regain lost muscle mass during convalescence may also be impaired. In a small observational study, muscle atrophy resolved only in a minority of ICU survivors at six months after ICU discharge. Studies in exercise physiology have demonstrated that resistance training and amino acid ingestion have synergistic effects on muscle protein synthesis in healthy subjects. It is therefore an appealing therapy to reconstitute muscle mass after critical illness. Despite several clinical trials, there is equipoise regarding the efficacy of exercise in improving physical function in-ICU after ICU discharge. These mixed signals are unsurprising given the heterogeneous causes of ICUAW. Only a few studies in this field have examined muscle architecture or cellular signaling in response to training. However, the gold standard in determining the anabolic response to exercise is to directly measure the effects on protein synthesis and breakdown. There is still no published research using this methodology to assess the effects of exercise interventions in former ICU patients. To understand the role of physical exercise in regaining lost muscle mass, the investigators plan to investigate the anabolic effects to resistance training after critical illness. Aim and hypothesis The aim of this study is to determine the anabolic response to resistance exercise after critical illness. The investigators hypothesize that study subjects recovering from critical illness have an impaired anabolic response to resistance exercise after ICU stay as compared to non-critically ill controls. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05261984
Study type Interventional
Source Karolinska University Hospital
Contact
Status Completed
Phase N/A
Start date March 8, 2022
Completion date January 18, 2024

See also
  Status Clinical Trial Phase
Completed NCT04551508 - Delirium Screening 3 Methods Study
Recruiting NCT06037928 - Plasma Sodium and Sodium Administration in the ICU
Completed NCT03671447 - Enhanced Recovery After Intensive Care (ERIC) N/A
Recruiting NCT03941002 - Continuous Evaluation of Diaphragm Function N/A
Recruiting NCT04674657 - Does Extra-Corporeal Membrane Oxygenation Alter Antiinfectives Therapy Pharmacokinetics in Critically Ill Patients
Completed NCT04239209 - Effect of Intensivist Communication on Surrogate Prognosis Interpretation N/A
Completed NCT05531305 - Longitudinal Changes in Muscle Mass After Intensive Care N/A
Terminated NCT03335124 - The Effect of Vitamin C, Thiamine and Hydrocortisone on Clinical Course and Outcome in Patients With Severe Sepsis and Septic Shock Phase 4
Completed NCT02916004 - The Use of Nociception Flexion Reflex and Pupillary Dilatation Reflex in ICU Patients. N/A
Recruiting NCT05883137 - High-flow Nasal Oxygenation for Apnoeic Oxygenation During Intubation of the Critically Ill
Completed NCT04479254 - The Impact of IC-Guided Feeding Protocol on Clinical Outcomes in Critically Ill Patients (The IC-Study) N/A
Recruiting NCT04475666 - Replacing Protein Via Enteral Nutrition in Critically Ill Patients N/A
Not yet recruiting NCT04516395 - Optimizing Antibiotic Dosing Regimens for the Treatment of Infection Caused by Carbapenem Resistant Enterobacteriaceae N/A
Not yet recruiting NCT04538469 - Absent Visitors: The Wider Implications of COVID-19 on Non-COVID Cardiothoracic ICU Patients, Relatives and Staff
Withdrawn NCT04043091 - Coronary Angiography in Critically Ill Patients With Type II Myocardial Infarction N/A
Recruiting NCT02922998 - CD64 and Antibiotics in Human Sepsis N/A
Recruiting NCT02989051 - Fluid Restriction Keeps Children Dry Phase 2/Phase 3
Completed NCT02899208 - Can an Actigraph be Used to Predict Physical Function in Intensive Care Patients? N/A
Completed NCT03048487 - Protein Consumption in Critically Ill Patients
Recruiting NCT02163109 - Oxygen Consumption in Critical Illness