Chronic Stroke Clinical Trial
Official title:
Transcranial Direct Current Stimulation and Robotic Training in Chronic Stroke
NCT number | NCT03562663 |
Other study ID # | BRC426 |
Secondary ID | |
Status | Completed |
Phase | N/A |
First received | |
Last updated | |
Start date | January 2012 |
Est. completion date | December 2016 |
Verified date | December 2020 |
Source | Burke Medical Research Institute |
Contact | n/a |
Is FDA regulated | No |
Health authority | |
Study type | Interventional |
Motor skill training and transcranial direct current stimulation (tDCS) have separately been shown to alter cortical excitability and enhance motor function in humans. Their combination is appealing for augmenting motor recovery in stroke patients, and this is an area presently under heavy investigation globally. The investigators have previously shown that the timing of tDCS application has functional significance, that tDCS applied prior to training can be beneficial for voluntary behavior, and that tDCS effects may not simply be additive to training effects, but may change the nature of the training effect. The investigators have separately reported in a randomized-controlled clinical trial, that upper limb robotic training alone over 12 weeks can improve clinical function of chronic stroke patients. Based on our results with tDCS and robotic training, the investigators hypothesize that the same repeated sessions of robotic training, but preceded by tDCS, would lead to a sustained and functional change greater than robotic training alone. The investigators will determine if clinical function can be improved and sustained with tDCS-robotic training and cortical physiology changes that underlie functional improvements.
Status | Completed |
Enrollment | 82 |
Est. completion date | December 2016 |
Est. primary completion date | January 2016 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - A first single focal unilateral lesion with diagnosis verified by brain imaging (MRI or CT scans) that occurred at least 6 months prior; - Ability to follow 1-2 step commands - Fugl-Meyer assessment of 7 to 58 out of 66 (neither hemiplegic nor fully recovered motor function in the muscles of the shoulder and elbow and wrist). Exclusion Criteria: - A fixed contraction deformity in the affected limb; - A complete and total flaccid paralysis of all shoulder and elbow motor performance; - A hemorrhagic stroke - Presence of tDCS / TMS risk factors - Presence of an electrically, magnetically or mechanically activated implant (including cardiac pacemaker), an intracerebral vascular clip, or any other electrically sensitive support system - A history of medication-resistant epilepsy in the family - Past history of seizures or unexplained spells of loss of consciousness |
Country | Name | City | State |
---|---|---|---|
n/a |
Lead Sponsor | Collaborator |
---|---|
Burke Medical Research Institute | Beth Israel Deaconess Medical Center, Feinstein Institute for Medical Research, Massachusetts Institute of Technology, Spaulding Rehabilitation Hospital |
Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006 Dec;117(12):2584-96. Epub 2006 Aug 4. Review. — View Citation
Fregni F, Boggio PS, Mansur CG, Wagner T, Ferreira MJ, Lima MC, Rigonatti SP, Marcolin MA, Freedman SD, Nitsche MA, Pascual-Leone A. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005 Sep 28;16(14):1551-5. — View Citation
Heide G, Witte OW, Ziemann U. Physiology of modulation of motor cortex excitability by low-frequency suprathreshold repetitive transcranial magnetic stimulation. Exp Brain Res. 2006 May;171(1):26-34. Epub 2005 Nov 24. — View Citation
Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C, Cohen LG. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain. 2005 Mar;128(Pt 3):490-9. Epub 2005 Jan 5. — View Citation
Iyer MB, Mattu U, Grafman J, Lomarev M, Sato S, Wassermann EM. Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology. 2005 Mar 8;64(5):872-5. — View Citation
McCreery DB, Agnew WF, Yuen TG, Bullara L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng. 1990 Oct;37(10):996-1001. — View Citation
Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol. 2003 Nov;114(11):2220-2; author reply 2222-3. — View Citation
Nitsche MA, Niehaus L, Hoffmann KT, Hengst S, Liebetanz D, Paulus W, Meyer BU. MRI study of human brain exposed to weak direct current stimulation of the frontal cortex. Clin Neurophysiol. 2004 Oct;115(10):2419-23. — View Citation
Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994 Aug;117 ( Pt 4):847-58. — View Citation
Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003 Apr;114(4):589-95. — View Citation
Talelli P, Rothwell J. Does brain stimulation after stroke have a future? Curr Opin Neurol. 2006 Dec;19(6):543-50. Review. — View Citation
Tassinari CA, Cincotta M, Zaccara G, Michelucci R. Transcranial magnetic stimulation and epilepsy. Clin Neurophysiol. 2003 May;114(5):777-98. Review. — View Citation
Volpe BT, Krebs HI, Hogan N, Edelsteinn L, Diels CM, Aisen ML. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology. 1999 Nov 10;53(8):1874-6. — View Citation
Volpe BT, Krebs HI, Hogan N. Robot-aided sensorimotor training in stroke rehabilitation. Adv Neurol. 2003;92:429-33. Review. — View Citation
Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke. Arch Neurol. 2004 Dec;61(12):1844-8. Review. — View Citation
Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. Electroencephalogr Clin Neurophysiol. 1998 Jan;108(1):1-16. — View Citation
Webster BR, Celnik PA, Cohen LG. Noninvasive brain stimulation in stroke rehabilitation. NeuroRx. 2006 Oct;3(4):474-81. Review. — View Citation
Yuen TG, Agnew WF, Bullara LA, Jacques S, McCreery DB. Histological evaluation of neural damage from electrical stimulation: considerations for the selection of parameters for clinical application. Neurosurgery. 1981 Sep;9(3):292-9. — View Citation
* Note: There are 18 references in all — Click here to view all references
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Change From Baseline in Upper Limb Fugl Meyer Score | Upper limb fugl Meyer score is a measure of upper extremity motor weakness on a 66-point scale.
Fugl Meyer score range: 0-66. Higher scores indicate better outcome. Units: Units on a scale. |
Baseline and after the 12-week intervention |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT03780296 -
Implementing Technology Enhanced Real Time Action Observation Therapy in Persons With Chronic Stroke
|
N/A | |
Not yet recruiting |
NCT06057584 -
Effect of Somatosensory Motor Intergration Training on Post-stroke Upper Limb Function.
|
N/A | |
Completed |
NCT03228264 -
A Trial Investigating Telerehabilitation as an add-on to Face-to-face Speech and Language Therapy in Post-stroke Aphasia.
|
N/A | |
Completed |
NCT03531567 -
Game-Based Home Exercise Programs in Chronic Stroke: A Feasibility Study
|
N/A | |
Completed |
NCT02364232 -
Effects of Home-based vs. Clinic-based Rehabilitation on Sensorimotor, Cognition, Daily Function, and Participation
|
N/A | |
Completed |
NCT04121754 -
Post-Stroke Walking Speed and Community Ambulation Conversion Study
|
N/A | |
Completed |
NCT04574687 -
Effects of Action Observation Therapy on Fine Motor Skills of Upper Limb Functions in Chronic Stroke Patients.
|
N/A | |
Recruiting |
NCT04534556 -
Wireless Nerve Stimulation Device To Enhance Recovery After Stroke
|
N/A | |
Recruiting |
NCT04974840 -
Thera-band Resisted Treadmill Training for Chronic Stroke Patients
|
N/A | |
Completed |
NCT04553198 -
Quantifying the Role of Sensory Systems Processing in Post-Stroke Walking Recovery
|
N/A | |
Completed |
NCT04226417 -
Effect of Home Based Transcranial Direct Current Stimulation (tDCS) With Exercise on Upper and Lower Limb Motor Functions in Chronic Stroke
|
N/A | |
Recruiting |
NCT06049849 -
Can Patients With Chronic Stroke Regain Living Independence by Daily Energizing With Biophoton Generators
|
N/A | |
Active, not recruiting |
NCT02881736 -
Proprioceptive Deficits and Anomalies in Movement-error Processing in Chronic Stroke Patients
|
N/A | |
Completed |
NCT03208634 -
Rehabilitation Multi Sensory Room for Robot Assisted Functional Movements in Upper-limb Rehabilitation in Chronic Stroke
|
N/A | |
Completed |
NCT05183100 -
Effects of Neurodynamics on Lower Extremity Spasticity - a Study in Chronic Stroke
|
N/A | |
Completed |
NCT03326349 -
Home-based Computerized Cognitive Rehabilitation in Chronic Stage Stroke
|
N/A | |
Recruiting |
NCT04721860 -
Optimizing Training in Severe Post-Stroke Walking Impairment
|
N/A | |
Recruiting |
NCT06051539 -
Outcomes and Health Economics of Stroke Using Rhythmic Auditory Stimulation
|
N/A | |
Not yet recruiting |
NCT06060470 -
Active Balance and Cardio Care Intervention on Physical and Cardiovascular Health in People With Chronic Stroke
|
N/A | |
Recruiting |
NCT05591196 -
Hand and Arm Motor Recovery Via Non-invasive Electrical Spinal Cord Stimulation After Stroke
|
N/A |