Chronic Myeloid Leukemia Clinical Trial
Official title:
Investigation of the Possible Role of Genetic Polymorphism in Certain Metabolizing Enzymes and Membrane Transporters on Both Plasma Level and Molecular Response of Imatinib in Patients With Chronic Myeloid Leukemia
Imatinib, the tyrosine kinase inhibitor, is used for treatment of Philadelphia positive chronic myeloid leukemia. Despite its efficacy and favorable pharmacokinetic profile, there is a large inter-individual variability in imatinib plasma concentrations, which may lead to treatment failure and disease progression. Polymorphisms in genes related to absorption, distribution, metabolism and excretion of imatinib may affect the bioavailability and consequently the response to the drug. The study aims to investigate the possible effect of genetic polymorphisms in certain metabolizing enzymes [CYP3A5*3 (rs776746), CYP2C8*3 (rs11572080 and rs10509681)] and membrane transporters [ABCB1 2677G>T/A (rs2032582) and SLC22A1 1222A > G (rs628031)] by PCR on the plasma level (by HPLC-UV) and molecular response (MMR) of imatinib in patients with CML. The study also aims to provide CML patients with a personalized treatment option, thereby probably improving the response and reducing the side effects.
Introduction: Chronic myeloid leukaemia (CML) is a myeloproliferative disease with an incidence of one to two cases per 100,000 adults. It accounts for approximately 15% of newly diagnosed cases of leukemia in adults. The introduction of imatinib, the tyrosine kinase inhibitor (TKI), in the early 21st century is considered a breakthrough in the treatment of CML. In the vast majority of patients, treatment with imatinib induces cytogenetic and even molecular responses with very low or undetectable BCR-ABL1 transcript levels. These patients remain free from progression to blast crisis. However, imatinib does not cure the disease because it is unable to eradicate the leukaemic stem cells, which therefore provides a potential reservoir for relapse. Despite its efficacy and favorable pharmacokinetic profile, there is a large inter-individual variability in imatinib plasma concentrations, which may lead to treatment failure and disease progression. Polymorphisms in genes related to absorption, distribution, metabolism and excretion of imatinib may affect the bioavailability and consequently the response to the drug. Aim of the study: The study aims to investigate the possible effect of genetic polymorphisms in certain metabolizing enzymes [CYP3A5 * 3 (rs 776746), CYP2C8 * 3 (rs 11572080 and rs 10509681)] and membrane transporters [ABCB1 2677 G>T/A (rs 2032582) and SLC22A1 1222 A > G (rs 628031)] on the plasma level and molecular response (MMR) of imatinib in patients with CML. These polymorphisms were selected based on their relevance to the pharmacokinetics of imatinib and on their frequency in Caucasians. The study also aims to provide CML patients with a personalized treatment option, thereby probably improving the response and reducing the side effects. Patients and methods: Patients: The study will include patients with documented hematological, cytogenetic and molecular diagnosis of chronic phase CML, who are on continuous treatment with 400 mg oral dose of imatinib per day for at least 12 month at Medical Oncology Department, South Egypt Cancer Institute (SECI), Assiut. Egypt. Exclusion criteria are: duration of imatinib therapy less than 12 months, poor compliance to treatment and identification of gene mutation(s) in the kinase domain of BCR- ABL1. The patients will be divided into 2 groups according to their molecular response to imatinib as follow: Group I: CML patients with MMR Group II: CML patients without MMR Patients in both groups will be compared as regard the plasma level of imatinib and the selected genetic polymorphisms. Methods: Blood sampling: Three blood samples (3 ml for each) will be collected into EDTA-containing tubes by venipuncture for measurement of imatinib plasma level, measurement of BCR- ABL1 transcription level and for genotyping. Measurement of Imatinib trough level: Blood samples will be collected after 24 hours from the previous dose (trough) and after at least 5 days of regular use of the drug to ensure that the steady state is reached. Within 1 hour of collection, the blood samples will be centrifuged at 3,000 rpm for 10 minutes at room temperature and will be stored at -20°C until analysis. Plasma level of imatinib will be measured by high-performance liquid chromatography with ultraviolet detection (HPLC-UV) according to the method described by Barratt et al. Measurement of BCR- ABL1 transcription level: Total RNA will be extracted from peripheral blood leucocytes by the available RNA extraction kits. The BCR- ABL1 transcription level will be quantified by using real-time polymerase chain reaction (PCR) analysis to assess the molecular response to imatinib after 12 months of treatment with imatinib. Genotyping: The DNA will be extracted from leukocytes by the available DNA extraction kits and will be stored at -80°C until genotyping. Genotyping will be performed for CYP3A5 * 3 (rs 776746), CYP2C8 * 3 (rs 11572080 and rs 10509681), ABCB1 2677 G>T/A (rs 2032582) and SLC22A1 1222 A > G (rs 628031) by the PCR ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05400122 -
Natural Killer (NK) Cells in Combination With Interleukin-2 (IL-2) and Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor Vactosertib in Cancer
|
Phase 1 | |
Completed |
NCT02057185 -
Occupational Status and Hematological Disease
|
||
Recruiting |
NCT03326310 -
Selumetinib and Azacitidine in High Risk Chronic Blood Cancers
|
Phase 1 | |
Recruiting |
NCT04621851 -
Retro-prospective Observational Study on Risk of Progression in CP-CML Patients Eligible for TKI Discontinuation
|
||
Completed |
NCT01207440 -
Ponatinib for Chronic Myeloid Leukemia (CML) Evaluation and Ph+ Acute Lymphoblastic Leukemia (ALL)
|
Phase 2 | |
Not yet recruiting |
NCT06409936 -
PEARL Study: PotEntial of Asciminib in the eaRly Treatment of CML
|
Phase 2 | |
Active, not recruiting |
NCT02917720 -
2nd or 3rd TKI-stop After 2 Years Nilotinib Pre-treatment in CML-patients
|
Phase 2 | |
Not yet recruiting |
NCT02883036 -
Vitro Study of Tigecycline to Treat Chronic Myeloid Leukemia
|
N/A | |
Withdrawn |
NCT01188889 -
RAD001 in Patients With Chronic Phase Chronic Myeloid Leukemia w/ Molecular Disease.
|
Phase 1/Phase 2 | |
Completed |
NCT01795716 -
Bioequivalence Study of Mesylate Imatinib Capsule in Chronic Myeloid Leukemia Body
|
Phase 1 | |
Completed |
NCT00988013 -
Intensity Modulated Total Marrow Irradiation (IM-TMI) for Advanced Hematologic Malignancies
|
N/A | |
Approved for marketing |
NCT00905593 -
Nilotinib in Adult Patients With Imatinib-resistant or Intolerant Chronic Myeloid Leukemia in Blast Crisis, Accelerated Phase or Chronic Phase
|
Phase 3 | |
Terminated |
NCT00573378 -
Imatinib or Nilotinib With Pegylated Interferon-α2b in Chronic Myeloid Leukemia
|
Phase 2 | |
Completed |
NCT00469014 -
Busulfan, Fludarabine, Clofarabine With Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia
|
Phase 2 | |
Terminated |
NCT00522990 -
Study to Assess the Safety of Escalating Doses of AT9283, in Patients With Leukemias
|
Phase 1/Phase 2 | |
Completed |
NCT00257647 -
Use of SV40 Vectors to Treat Chronic Myeloid Leukemia (CML)
|
N/A | |
Unknown status |
NCT00598624 -
Clinical Trial to Evaluate the Safety and Efficacy of Treosulfan Based Conditioning Prior to Allogeneic Haematopoietic Stem Cell Transplantation (HSCT)
|
Phase 2 | |
Completed |
NCT00219739 -
STI571 ProspectIve RandomIzed Trial: SPIRIT
|
Phase 3 | |
Completed |
NCT06148493 -
Real-World Usage of Asciminib Among Patients With Chronic Myeloid Leukemia in Chronic Phase in the United States Using a Large Claims Database
|
||
Completed |
NCT00375219 -
Homoharringtonine (Omacetaxine Mepesuccinate) in Treating Patients With Chronic Myeloid Leukemia (CML) With the T315I BCR-ABL Gene Mutation
|
Phase 2 |