Clinical Trials Logo

Clinical Trial Summary

The purpose of the study is to learn more about how treatment with vitamin D can affect iron metabolism and blood levels of two hormones that control iron levels, hepcidin and hemojuvelin in people with chronic kidney disease (CKD).

Iron is an essential mineral which is a major component of proteins that carry oxygen in the blood. Problems with iron metabolism can lead to low blood levels (anemia), which can commonly happen in people with CKD.

New research over the last decade has uncovered a new hormone called `hepcidin', which is made in the liver and released into the blood. Hepcidin controls how much iron is in the blood by preventing the absorption of iron from food. Blood levels of hepcidin C are found to be high in people with CKD, and a recent small study in people with normal kidney function showed that treatment with vitamin D decreased hepcidin levels.

Another protein, known as `hemojuvelin', has been recently discovered and is also thought to control the amount of iron in the blood. The relationship between vitamin D and hemojuvelin has never been studied before.

In this study, investigators would like to examine the effects of vitamin D on iron metabolism and blood levels of hepcidin C and hemojuvelin in individuals with CKD.


Clinical Trial Description

Iron homeostasis is tightly regulated in humans. Iron is mostly recycled from hemoglobin, myoglobin and other enzymes. Since humans lack the capacity to excrete excess iron, it must be intricately regulated at the site of its absorption in the duodenum and proximal jejunum. In the last decade, hepcidin has emerged as a master regulator of iron homeostasis. It decreases iron absorption from the gut mucosa by limiting its transport from the enterocyte across the basolateral membrane into the circulation. It does so by down-regulating the synthesis or promoting internalization of a basolateral membrane protein `Ferroportin', the only known cellular iron exporter.

Vitamin D is hypothesized to exert a significant and independent effect on the iron metabolism. In the CKD population, low vitamin-D levels independently correlate with the severity of anemia. Hepcidin C levels are found to be elevated in the CKD population. Mechanisms underlying the effect of vitamin D on iron homeostasis potentially include vitamin D induced expression of erythropoietin receptors, increased proliferation of erythroid precursors, and reduction in hepcidin C levels due to reduction in IL-6 from the anti-inflammatory effects of vitamin D. More recently, a study revealed direct relationship between vitamin D replacement and a sustained fall in hepcidin C levels. The same group of researchers found the above relationship to be due to a direct effect of vitamin D on hepcidin expression.

Hemojuvelin (HJV) is a protein encoded by the HFE2 gene and is found in the membrane bound and the soluble form (sHJV) in the humans. Mutations in the HJV gene are responsible for Juvenile Hemochromatosis. It is an upstream regulator of hepcidin transcription and appears to be essential for hepcidin expression in the hepatocytes and has important role to play in iron homeostasis. Recently, an assay has become available to measure the sHJV levels in the serum.

Although, we know that hepcidin plays a central role in iron homeostasis and recent studies have given us insight into the role hemojuvelin and vitamin D play in iron metabolism, to date, no studies have examined the effect on vitamin D replacement on hepcidin, hemojuvelin levels and iron metabolism in individuals with CKD.

Hypothesis 1: Treatment with an activated vitamin D analog in the individuals with CKD results in a statistically significant fall in hepcidin C levels as compared to individuals provided with placebo.

Hypothesis 2: Treatment with an activated vitamin D analog results in decreased levels of soluble hemojuvelin in individuals with chronic kidney disease.

Hypothesis 3: Vitamin D replacement in the individuals with CKD results in improved iron parameters as compared to the placebo. ;


Study Design

Allocation: Randomized, Intervention Model: Parallel Assignment, Masking: Double Blind (Subject, Caregiver, Investigator, Outcomes Assessor)


Related Conditions & MeSH terms


NCT number NCT01988116
Study type Interventional
Source University of Alabama at Birmingham
Contact
Status Completed
Phase Phase 0
Start date October 2013
Completion date June 2015

See also
  Status Clinical Trial Phase
Completed NCT05491642 - A Study in Male and Female Participants (After Menopause) With Mild to Moderate High Blood Pressure to Learn How Safe the Study Treatment BAY3283142 is, How it Affects the Body and How it Moves Into, Through and Out of the Body After Taking Single and Multiple Doses Phase 1
Recruiting NCT06363097 - Urinary Uromodulin, Dietary Sodium Intake and Ambulatory Blood Pressure in Patients With Chronic Kidney Disease
Terminated NCT04043026 - The Effects of Renal Function and Atrial Fibrillation on Lipoproteins and Clot Structure/Function
Completed NCT05318014 - Low-protein Formula Supplements in Chronic Kidney Disease N/A
Active, not recruiting NCT06071065 - Clinical Pharmacist Intervention on Medication Adherence and Clinical Outcomes in Chronic Kidney Disease Patients N/A
Completed NCT02878317 - Skin Autofluorescence as a Risk Marker in People Receiving Dialysis.
Not yet recruiting NCT06039254 - Safety and Pharmacokinetics of HRS-1780 in Healthy Subjects and Subjects With Impaired Renal Function Phase 1
Recruiting NCT03160326 - The QUALITY Vets Project: Muscle Quality and Kidney Disease
Completed NCT02756520 - Observational Study on CKD Treatment With a Ketosteril Supplemented Protein-restricted Diet (Keto-024-CNI)
Completed NCT02875886 - DD-study: Diet or Diuretics for Salt-sensitivity in Chronic Kidney Disease Phase 4
Completed NCT02836574 - A Study of Renal Autologous Cell Therapy (REACT) in Type 2 Diabetics With Chronic Kidney Disease Phase 2
Completed NCT02896309 - The Effect of Correction of Metabolic Acidosis in CKD on Intrarenal RAS Activity N/A
Completed NCT02888171 - Impact of Ferric Citrate vs Ferrous Sulfate on Iron Parameters and Hemoglobin in Individuals With CKD and Iron Deficiency N/A
Withdrawn NCT02885545 - The Strategy to Prevent Hemorrhage Associated With Anticoagulation in Renal Disease Management (STOP HARM) Trial Phase 4
Active, not recruiting NCT02483039 - Nephrologist Follow-up Versus Usual Care After an Acute Kidney Injury Hospitalization N/A
Completed NCT02992548 - Effect of Pravastatin on Erythrocyte Membrane Fatty Acid Contents in Patients With Chronic Kidney Disease Phase 4
Terminated NCT02543177 - Optimised Procedure in Patients With NSTEMI and CKD N/A
Completed NCT02369549 - Micro-Particle Curcumin for the Treatment of Chronic Kidney Disease Phase 3
Recruiting NCT02205944 - Impact of Presurgical Exercise on Hemodialysis Fistula Outcomes N/A
Active, not recruiting NCT02231138 - Efficacy and Safety of Abelmoschus Manihot for Chronic Kidney Disease Phase 4