Clinical Trials Logo

Childhood Spinal Cord Neoplasm clinical trials

View clinical trials related to Childhood Spinal Cord Neoplasm.

Filter by:
  • None
  • Page 1

NCT ID: NCT01236560 Completed - Brain Stem Glioma Clinical Trials

Vorinostat, Temozolomide, or Bevacizumab in Combination With Radiation Therapy Followed by Bevacizumab and Temozolomide in Young Patients With Newly Diagnosed High-Grade Glioma

Start date: January 26, 2011
Phase: Phase 2/Phase 3
Study type: Interventional

This randomized phase II/III trial is studying vorinostat, temozolomide, or bevacizumab to see how well they work compared with each other when given together with radiation therapy followed by bevacizumab and temozolomide in treating young patients with newly diagnosed high-grade glioma. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Radiation therapy uses high-energy x-rays to kill tumor cells. It is not yet known whether giving vorinostat is more effective then temozolomide or bevacizumab when given together with radiation therapy in treating glioma.

NCT ID: NCT00381797 Completed - Clinical trials for Recurrent Childhood Ependymoma

Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma

Start date: August 2006
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well giving bevacizumab together with irinotecan works in treating young patients with recurrent, progressive, or refractory glioma, medulloblastoma, ependymoma, or low grade glioma. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of glioma by blocking blood flow to the tumor. Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bevacizumab together with irinotecan may kill more tumor cells.

NCT ID: NCT00363272 Completed - Clinical trials for Unspecified Childhood Solid Tumor, Protocol Specific

Ispinesib in Treating Young Patients With Relapsed or Refractory Solid Tumors or Lymphoma

Start date: June 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of ispinesib in treating young patients with relapsed or refractory solid tumors or lymphoma. Drugs used in chemotherapy, such as ispinesib, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing

NCT ID: NCT00326664 Completed - Clinical trials for Recurrent Childhood Ependymoma

AZD2171 in Treating Young Patients With Recurrent, Progressive, or Refractory Primary CNS Tumors

Start date: March 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of AZD2171 in treating young patients with recurrent, progressive, or refractory primary CNS tumors. AZD2171 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.

NCT ID: NCT00053963 Completed - Clinical trials for Refractory Chronic Lymphocytic Leukemia

FR901228 in Treating Children With Refractory or Recurrent Solid Tumors or Leukemia

Start date: September 2002
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of FR901228 in treating children with refractory or recurrent solid tumors or leukemia. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die