Clinical Trials Logo

Clinical Trial Summary

The primary aim of this project will be to determine the effects of the tRNS-augmented unilateral and bilateral MT, and their effects relative to the control interventions (sham tRNS with unilateral or bilateral MT) on restoring health outcomes including motor function, daily function, quality of life and self-efficacy, and motor control strategy as well as brain activities (electroencephalography, EEG) in stroke patients.


Clinical Trial Description

Developing effective rehabilitation interventions to maximize functional recovery remains to be a major challenge for stroke rehabilitation. Transcranial random noise stimulation (tRNS) has emerged as a promising brain neurotechnology to enhance neural plasticity to augment treatment effects of stroke neuorehabilitation therapies. Compared to traditional brain neurotechnology such as transcranial direct current stimulation (tDCS), tRNS does not have polarity constraints, thus providing more consistent modulatory effects, less response variability and less adverse effects, which make it a potentially ideal approach to combine with stroke rehabilitation therapies. Mirror therapy (MT) is effective at improving sensorimotor recovery in stroke patients. Because of its easiness for use in clinical settings, MT has been recommended by American Heart Association as a promising intervention for stroke patients. Combining tRNS with MT could be an appealing approach to further boost brain plasticity to maximize MT treatment benefits in the clinical settings. However, MT can be delivered using unilateral or bilateral approaches, which may induce differential treatment benefits. Identifying the optimal combination of MT with tRNS on recovering functions and brain mechanisms will be imperative for development of evidence-based precision brain neurotechnology-augmented stroke rehabilitation. Therefore, this research project will (1) compare the effects of the tRNS-augmented unilateral and bilateral MT, and their effects relative to the control interventions (sham tRNS with unilateral or bilateral MT) comprehensively on motor function, daily function, quality of life and self-efficacy, motor control strategy and brain activities (electroencephalography, EEG) in stroke patients; (2) examine the retention effects and possible delayed response of tRNS-augmented unilateral and bilateral MT at 3-month and 6-month follow-up and (3) identify the predictors of the treatment success to determine good responders to the tRNS-augmented unilateral and bilateral MT to facilitate clinical translation of the intervention. The investigator will conduct a randomized, sham controlled clinical trial with 128 stroke patients in this 5-year project. Patients will be randomly assigned to (1) tRNS-augmented unilateral MT, (2) tRNS-augmented bilateral MT, (3) sham tRNS with unilateral MT, and (4) sham tRNS with bilateral MT. Participants will receive 20 intervention sessions (90 minutes/day, 5 days/week, for 4 consecutive weeks). The outcome measures will include behavioral assessments to evaluate motor and daily function, quality of life and self-efficacy; kinematic assessments to evaluate motor control strategy; and EEG to assess brain activities (power). The behavioral measures will be performed at pre-test, interim-test, post-test, and 3-month and 6-month follow-up. The kinematic and EEG assessment will be administered at pre-test and post-test. In addition, the EEG assessment will be conducted during the intervention period to evaluate the dynamical changes of brain activities. This research project will provide scientific evidence of the treatment effects of brain neurotechnology-augmented stroke rehabilitation therapy. Specifically, the findings will elucidate behavioral changes and possible biomechanical and brain mechanisms associated with the novel tRNS-augmented MT. In addition, the results will reveal the characteristics of good responders to the combined intervention. The overall results will contribute to formulation of precision hybrid brain neurotechnology with stroke rehabilitation therapies to maximize neural and functional recovery after stroke. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT05238272
Study type Interventional
Source Chang Gung Memorial Hospital
Contact Ching-yi Wu, ScD
Phone #886-3-2118800
Email cywu@mail.cgu.edu.tw
Status Recruiting
Phase N/A
Start date March 1, 2022
Completion date December 31, 2026

See also
  Status Clinical Trial Phase
Completed NCT05477238 - Oxygen Consumption in Post-stroke Patients During Various Walking Activities Compared to Healthy Controls N/A
Completed NCT00046293 - ReoPro and Retavase to Treat Acute Stroke Phase 2
Completed NCT04584645 - A Digital Flu Intervention for People With Cardiovascular Conditions N/A
Completed NCT01116544 - Treatment of Chronic Stroke With AMES + EMG Biofeedback N/A
Withdrawn NCT04991038 - Clinical Investigation to Compare Safety and Efficacy of DAISE and Stent Retrievers for Thrombectomy In Acute Ischemic Stroke Patients N/A
Active, not recruiting NCT02563886 - Electrically Assisted Movement Therapy N/A
Recruiting NCT02446730 - Efficacy and Safety of BiomatrixTM Stent and 5mg-Maintenance Dose of Prasugrel in Patients With Acute Coronary Syndrome Phase 4
Completed NCT02141932 - Pocket-size Cardiovascular Ultrasound in Stroke N/A
Completed NCT01915368 - Determining Optimal Post-Stroke Exercise (DOSE) N/A
Recruiting NCT02557737 - Botulinim Toxin Type A Injections by Different Guidance in Stroke Patients With Spasticity on Upper Extremities Phase 3
Recruiting NCT01769326 - Influence of Timing on Motor Learning N/A
Terminated NCT01705353 - The Role of HMGB-1 in Chronic Stroke N/A
Completed NCT01656876 - The Effects of Mirror Therapy on Upper Extremity in Stroke Patients N/A
Completed NCT01182818 - Fabry and Stroke Epidemiological Protocol (FASEP): Risk Factors In Ischemic Stroke Patients With Fabry Disease N/A
Completed NCT01423201 - Transient Ischemic Attack (TIA) Triage and Evaluation of Stroke Risk
Withdrawn NCT00573092 - Analyzing Gene Regions That May Interact With the Effectiveness of High Blood Pressure Drugs N/A
Completed NCT00542256 - tDCS and Physical Therapy in Stroke N/A
Completed NCT00377689 - Evaluation of an Intervention Program Targeted at Improving Balance and Functional Skills After Stroke Phase 2
Recruiting NCT00166751 - Sonographic Assessment of Laryngeal Elevation N/A
Completed NCT00125619 - Internally Versus Externally Guided Body Weight-Supported Treadmill Training (BWSTT) for Locomotor Recovery Post-stroke N/A