Clinical Trials Logo

Blastic Phase clinical trials

View clinical trials related to Blastic Phase.

Filter by:
  • None
  • Page 1

NCT ID: NCT01445080 Completed - Clinical trials for Recurrent Childhood Acute Lymphoblastic Leukemia

Sorafenib in Treating Young Patients With Relapsed or Refractory Solid Tumors or Leukemia

Start date: May 30, 2006
Phase: Phase 1/Phase 2
Study type: Interventional

This phase I/II trial is studying the side effects and best dose of sorafenib in treating young patients with relapsed or refractory solid tumors or leukemia. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer.

NCT ID: NCT00383474 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Tipifarnib and Bortezomib in Treating Patients With Acute Leukemia or Chronic Myelogenous Leukemia in Blast Phase

Start date: August 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of tipifarnib and bortezomib in treating patients with acute leukemia or chronic myelogenous leukemia in blast phase. Tipifarnib and bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving tipifarnib together with bortezomib may kill more cancer cells.

NCT ID: NCT00351975 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Belinostat and Azacitidine in Treating Patients With Advanced Hematologic Cancers or Other Diseases

Start date: June 2006
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of belinostat when given together with azacitidine in treating patients with advanced hematologic cancers or other diseases. Belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving belinostat together with azacitidine may kill more cancer cells.

NCT ID: NCT00217646 Completed - Clinical trials for Recurrent Adult Acute Myeloid Leukemia

Sorafenib in Treating Patients With Refractory or Relapsed Acute Leukemia, Myelodysplastic Syndromes, or Blastic Phase Chronic Myelogenous Leukemia

Start date: October 2005
Phase: Phase 1
Study type: Interventional

This randomized phase I trial is studying the side effects and best dose of two different schedules of sorafenib in treating patients with refractory or relapsed acute leukemia, myelodysplastic syndromes, or blastic phase chronic myelogenous leukemia. Sorafenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the cancer.

NCT ID: NCT00036738 Completed - Clinical trials for Recurrent Adult Acute Lymphoblastic Leukemia

Fludarabine Phosphate and Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Has Responded to Treatment With Imatinib Mesylate, Dasatinib, or Nilotinib

Start date: July 13, 2001
Phase: Phase 2
Study type: Interventional

This phase II trial is studying how well fludarabine phosphate and total-body irradiation followed by donor peripheral blood stem cell transplant work in treating patients with acute lymphoblastic leukemia or chronic myelogenous leukemia that has responded to previous treatment with imatinib mesylate, dasatinib, or nilotinib. Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving mycophenolate mofetil and cyclosporine after the transplant may stop this from happening.