Clinical Trials Logo

Clinical Trial Details — Status: Completed

Administrative data

NCT number NCT03499249
Other study ID # H-40962
Secondary ID 135796
Status Completed
Phase Phase 2
First received
Last updated
Start date May 18, 2018
Est. completion date March 23, 2024

Study information

Verified date March 2024
Source Baylor College of Medicine
Contact n/a
Is FDA regulated No
Health authority
Study type Interventional

Clinical Trial Summary

Biliary atresia (BA) is a devastating liver disease of infancy, characterized by bile duct obstruction leading to liver fibrosis, cirrhosis, and eventual need for transplantation in most cases. BA is treated with Kasai portoenterostomy (KP). KPs can achieve bile drainage and improve outcomes. However, even with standard evidence of "good bile flow," bile flow rarely normalizes completely and liver disease continues to progress. In this study, the investigators test whether intravenous N-acetylcysteine (NAC) can improve bile flow after KP. The rationale is that NAC leads to synthesis of glutathione, which is a powerful stimulator of bile flow. The primary objective is to determine whether NAC normalizes total serum bile acid (TSBA) concentrations within 24 weeks of KP. Achieving normal TSBAs is uncommon with current standard-of-care, and is predicted to be associated with better long-term outcomes. The secondary objectives are to describe how other parameters commonly followed in BA change with NAC therapy, as well as report adverse events occurring with therapy and in the first two years of life. This study follows the "minimax" Phase 2 clinical trial design.


Description:

Biliary atresia (BA) is a disease characterized by fibro-obliteration of extrahepatic bile ducts leading to impaired bile flow (Sokol et al., 2007). BA is treated with the Kasai portoenterostomy (KP), an operation which connects the liver directly to the intestine in attempt to relieve bile back-up and promote bile flow. KPs have variable success. KPs occasionally normalize bile flow and stop disease progression (Jimenez-Rivera et al., 2013). More commonly, however, bile flow never completely normalizes after KP. This can be detected by elevated total bilirubin (TB) or conjugated bilirubin (Bc) serum concentrations, or, when TB and Bc are normal, elevated total serum bile acids (TSBA) concentrations (Bezerra et al., 2014; Shneider et al., 2015; Venkat et al., 2014). Impaired flow leads to fibrosis, cirrhosis, and eventual need for liver transplantation. Given these uneven results, therapies are urgently needed to enhance the KP's success. The investigators hypothesize that N-acetylcysteine (NAC) will improve outcomes after KP, because NAC is a precursor for the powerful choleretic molecule glutathione (Ballatori and Truong, 1989, 1992, Ballatori et al., 1986, 1989). The hypothesis assumes that better bile flow will lead to better outcomes. This is supported by previous reports demonstrating that good bile flow correlates with slower disease progression in BA. For example, a recent study showed infants with good bile flow after KP were significantly less likely to develop failure-to-thrive, ascites, hypoalbuminemia, or coagulopathy in the first two years of life (Shneider et al., 2015). Furthermore, these infants had significantly higher transplant-free survival in the same time period. In this study, TB <2.0 mg/dL within three months of KP was used as the marker for good bile flow. NAC has a number of properties that make it an especially attractive potential therapeutic agent. First, glutathione creates an osmotic gradient in the bile duct lumen which drives one-third of total bile flow in humans (the other drivers are bile acids and secretin/bicarbonate) (Ballatori and Truong, 1989, 1992, Ballatori et al., 1986, 1989). Second, NAC is a Food and Drug Administration-approved therapy for another serious liver condition in neonates and children (acetaminophen overdose). It has also been used for other liver and non-liver indications in neonates, with few reported adverse events (Ahola et al., 2003; Flynn et al., 2003; Jenkins et al., 2016; Kortsalioudaki et al., 2008; Mager et al., 2008; Soghier and Brion, 2006; Squires et al., 2013; Wiest et al., 2014). Third, glutathione is an anti-oxidant, which could scavenge the free radicals contributing to cirrhosis. Preclinical studies are also promising, with glutathione's strong choleretic properties best established in rat flow studies and NAC's hepatoprotective effects documented in rescuing different mouse models of cholestasis (Ballatori et al., 1986; Galicia-Moreno et al., 2009, 2012; Tahan et al., 2007). To test the hypotheses, the investigators will administer intravenous NAC continuously for seven days and determine the number of subjects with normal TSBAs (0-10 umol/L) within 24 weeks of KP. In addition, markers of BA progression, such as abnormal laboratory results, failure-to-thrive, and occurrence of complications related to chronic liver disease, will be described over the first two years of life. Finally, all adverse events occurring during NAC infusion and in the 21 days after its completion will be recorded. The study employs the two-stage "minimax" Phase 2 clinical trial design, a design commonly used in oncological trials to determine whether a particularly therapy has sufficient activity to warrant a larger Phase 3 trial (Simon, 1989). The two-stage "minimax" design offers two distinct advantages compared to other designs: (i) early termination if the drug is not efficacious; and (ii) small sample sizes, because historical controls rather than a separate control arm are used.


Recruitment information / eligibility

Status Completed
Enrollment 13
Est. completion date March 23, 2024
Est. primary completion date October 31, 2022
Accepts healthy volunteers No
Gender All
Age group 0 Days to 90 Days
Eligibility Inclusion Criteria: 1. Age less than or equal to 90 days at time of KP (standard age range in which KPs are performed) 2. BA diagnosis made by intraoperative cholangiography and KP performed at Texas Children's Hospital, Texas Medical Center Campus 3. Legal guardian(s) sign consent after understanding risks and investigational nature of study Exclusion Criteria: 1. Decompensated liver disease (INR >1.3) despite parenteral Vitamin K administration) 2. KP not performed for any reason (i.e., normal intraoperative cholangiography, or liver found to be too diseased intraoperatively to proceed with KP) 3. Active respiratory infection 4. Renal impairment, as defined by having an eGFR < 60 mL/min/1.73m2 or creatinine clearance < 60 mL/min (https://www.niddk.nih.gov/health-information/communication-programs/nkdep/laboratory- evaluation/glomerular-filtration-rate-calculators/children-conventional-units) 5. Presence of severe concurrent illnesses, such as pulmonary (i.e., bronchopulmonary dysplasia), neurological, cardiovascular, metabolic, endocrine, and renal disorders, which may be congenital or acquired, that would interfere with the conduct and results of the study

Study Design


Related Conditions & MeSH terms


Intervention

Drug:
N-Acetyl cysteine
Intravenous NAC therapy (6.25 mg/kg/hour of 10 mg/ml solution, or 0.625 ml/kg/hour, to give 150 mg/kg/day), starting within 24 hours of completion of KP and lasting for a total of 7 days

Locations

Country Name City State
United States Texas Children's Hospital and Baylor College of Medicine Houston Texas

Sponsors (1)

Lead Sponsor Collaborator
Baylor College of Medicine

Country where clinical trial is conducted

United States, 

References & Publications (22)

Ahola T, Lapatto R, Raivio KO, Selander B, Stigson L, Jonsson B, Jonsbo F, Esberg G, Stovring S, Kjartansson S, Stiris T, Lossius K, Virkola K, Fellman V. N-acetylcysteine does not prevent bronchopulmonary dysplasia in immature infants: a randomized controlled trial. J Pediatr. 2003 Dec;143(6):713-9. doi: 10.1067/S0022-3476(03)00419-0. — View Citation

Ballatori N, Jacob R, Boyer JL. Intrabiliary glutathione hydrolysis. A source of glutamate in bile. J Biol Chem. 1986 Jun 15;261(17):7860-5. — View Citation

Ballatori N, Truong AT, Ma AK, Boyer JL. Determinants of glutathione efflux and biliary GSH/GSSG ratio in perfused rat liver. Am J Physiol. 1989 Mar;256(3 Pt 1):G482-90. doi: 10.1152/ajpgi.1989.256.3.G482. — View Citation

Ballatori N, Truong AT. Glutathione as a primary osmotic driving force in hepatic bile formation. Am J Physiol. 1992 Nov;263(5 Pt 1):G617-24. doi: 10.1152/ajpgi.1992.263.5.G617. — View Citation

Ballatori N, Truong AT. Relation between biliary glutathione excretion and bile acid-independent bile flow. Am J Physiol. 1989 Jan;256(1 Pt 1):G22-30. doi: 10.1152/ajpgi.1989.256.1.G22. — View Citation

Bezerra JA, Spino C, Magee JC, Shneider BL, Rosenthal P, Wang KS, Erlichman J, Haber B, Hertel PM, Karpen SJ, Kerkar N, Loomes KM, Molleston JP, Murray KF, Romero R, Schwarz KB, Shepherd R, Suchy FJ, Turmelle YP, Whitington PF, Moore J, Sherker AH, Robuck PR, Sokol RJ; Childhood Liver Disease Research and Education Network (ChiLDREN). Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: the START randomized clinical trial. JAMA. 2014 May 7;311(17):1750-9. doi: 10.1001/jama.2014.2623. — View Citation

Flynn DM, Mohan N, McKiernan P, Beath S, Buckels J, Mayer D, Kelly DA. Progress in treatment and outcome for children with neonatal haemochromatosis. Arch Dis Child Fetal Neonatal Ed. 2003 Mar;88(2):F124-7. doi: 10.1136/fn.88.2.f124. — View Citation

Galicia-Moreno M, Favari L, Muriel P. Antifibrotic and antioxidant effects of N-acetylcysteine in an experimental cholestatic model. Eur J Gastroenterol Hepatol. 2012 Feb;24(2):179-85. doi: 10.1097/MEG.0b013e32834f3123. — View Citation

Galicia-Moreno M, Rodriguez-Rivera A, Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P, Moreno MG, Muriel P. N-acetylcysteine prevents carbon tetrachloride-induced liver cirrhosis: role of liver transforming growth factor-beta and oxidative stress. Eur J Gastroenterol Hepatol. 2009 Aug;21(8):908-14. doi: 10.1097/MEG.0b013e32831f1f3a. — View Citation

Jenkins DD, Wiest DB, Mulvihill DM, Hlavacek AM, Majstoravich SJ, Brown TR, Taylor JJ, Buckley JR, Turner RP, Rollins LG, Bentzley JP, Hope KE, Barbour AB, Lowe DW, Martin RH, Chang EY. Fetal and Neonatal Effects of N-Acetylcysteine When Used for Neuroprotection in Maternal Chorioamnionitis. J Pediatr. 2016 Jan;168:67-76.e6. doi: 10.1016/j.jpeds.2015.09.076. Epub 2015 Nov 3. — View Citation

Jimenez-Rivera C, Jolin-Dahel KS, Fortinsky KJ, Gozdyra P, Benchimol EI. International incidence and outcomes of biliary atresia. J Pediatr Gastroenterol Nutr. 2013 Apr;56(4):344-54. doi: 10.1097/MPG.0b013e318282a913. — View Citation

Kortsalioudaki C, Taylor RM, Cheeseman P, Bansal S, Mieli-Vergani G, Dhawan A. Safety and efficacy of N-acetylcysteine in children with non-acetaminophen-induced acute liver failure. Liver Transpl. 2008 Jan;14(1):25-30. doi: 10.1002/lt.21246. — View Citation

Lynch RM, Robertson R. Anaphylactoid reactions to intravenous N-acetylcysteine: a prospective case controlled study. Accid Emerg Nurs. 2004 Jan;12(1):10-5. doi: 10.1016/j.aaen.2003.07.001. — View Citation

Mager DR, Marcon M, Wales P, Pencharz PB. Use of N-acetyl cysteine for the treatment of parenteral nutrition-induced liver disease in children receiving home parenteral nutrition. J Pediatr Gastroenterol Nutr. 2008 Feb;46(2):220-3. doi: 10.1097/MPG.0b013e3180653ce6. No abstract available. — View Citation

Shneider BL, Magee JC, Karpen SJ, Rand EB, Narkewicz MR, Bass LM, Schwarz K, Whitington PF, Bezerra JA, Kerkar N, Haber B, Rosenthal P, Turmelle YP, Molleston JP, Murray KF, Ng VL, Wang KS, Romero R, Squires RH, Arnon R, Sherker AH, Moore J, Ye W, Sokol RJ; Childhood Liver Disease Research Network (ChiLDReN). Total Serum Bilirubin within 3 Months of Hepatoportoenterostomy Predicts Short-Term Outcomes in Biliary Atresia. J Pediatr. 2016 Mar;170:211-7.e1-2. doi: 10.1016/j.jpeds.2015.11.058. Epub 2015 Dec 24. — View Citation

Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989 Mar;10(1):1-10. doi: 10.1016/0197-2456(89)90015-9. — View Citation

Soghier LM, Brion LP. Cysteine, cystine or N-acetylcysteine supplementation in parenterally fed neonates. Cochrane Database Syst Rev. 2006 Oct 18;2006(4):CD004869. doi: 10.1002/14651858.CD004869.pub2. — View Citation

Sokol RJ, Shepherd RW, Superina R, Bezerra JA, Robuck P, Hoofnagle JH. Screening and outcomes in biliary atresia: summary of a National Institutes of Health workshop. Hepatology. 2007 Aug;46(2):566-81. doi: 10.1002/hep.21790. — View Citation

Squires RH, Dhawan A, Alonso E, Narkewicz MR, Shneider BL, Rodriguez-Baez N, Olio DD, Karpen S, Bucuvalas J, Lobritto S, Rand E, Rosenthal P, Horslen S, Ng V, Subbarao G, Kerkar N, Rudnick D, Lopez MJ, Schwarz K, Romero R, Elisofon S, Doo E, Robuck PR, Lawlor S, Belle SH; Pediatric Acute Liver Failure Study Group. Intravenous N-acetylcysteine in pediatric patients with nonacetaminophen acute liver failure: a placebo-controlled clinical trial. Hepatology. 2013 Apr;57(4):1542-9. doi: 10.1002/hep.26001. Epub 2013 Feb 4. — View Citation

Tahan G, Tarcin O, Tahan V, Eren F, Gedik N, Sahan E, Biberoglu N, Guzel S, Bozbas A, Tozun N, Yucel O. The effects of N-acetylcysteine on bile duct ligation-induced liver fibrosis in rats. Dig Dis Sci. 2007 Dec;52(12):3348-54. doi: 10.1007/s10620-006-9717-9. Epub 2007 Apr 12. — View Citation

Venkat VL, Shneider BL, Magee JC, Turmelle Y, Arnon R, Bezerra JA, Hertel PM, Karpen SJ, Kerkar N, Loomes KM, Molleston J, Murray KF, Ng VL, Raghunathan T, Rosenthal P, Schwartz K, Sherker AH, Sokol RJ, Teckman J, Wang K, Whitington PF, Heubi JE; Childhood Liver Disease Research and Education Network. Total serum bilirubin predicts fat-soluble vitamin deficiency better than serum bile acids in infants with biliary atresia. J Pediatr Gastroenterol Nutr. 2014 Dec;59(6):702-7. doi: 10.1097/MPG.0000000000000547. — View Citation

Wiest DB, Chang E, Fanning D, Garner S, Cox T, Jenkins DD. Antenatal pharmacokinetics and placental transfer of N-acetylcysteine in chorioamnionitis for fetal neuroprotection. J Pediatr. 2014 Oct;165(4):672-7.e2. doi: 10.1016/j.jpeds.2014.06.044. Epub 2014 Jul 23. — View Citation

* Note: There are 22 references in allClick here to view all references

Outcome

Type Measure Description Time frame Safety issue
Primary Number of Patients With Biliary Atresia (BA) Achieving Total Serum Bile Acids Less Than or Equal to 10 *U*Mol/L Within 24 Weeks of Kasai Portoenterostomy (KP) Expected is ~5% of participants based on historical controls (see protocol for summary of historical controls); a higher number is a better outcome Within 24 weeks after KP
Secondary Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), Gamma-glutamyltransferase (GGT) Fold, and Conjugated Bilirubin (Bc) Change Above Baseline at 3 Days and 7 Days After KP (During Treatment) fold-change from baseline (ratio); a fold-change <1 is a better outcome. 3 days after KP compared to baseline (before KP); 7 days after KP compared to baseline (before KP)
Secondary Number of Patients Experiencing Sentinel Events in the First 2 Years of Life Events include Nasogastric (NG) feeds or Total Parental Nutrition (TPN) initiation, Splenomegaly (based on ultrasound findings), Thrombocytopenia (platelets <150,000/mm3), Ascites (recorded when diuretics were needed for fluid accumulation), GI bleed (varices documented by endoscopy), Portal hypertension (one of the following: ascites, or combination of splenomegaly and thrombocytopenia), and Liver transplant or death; units are number of patients, higher numbers are worse outcomes. First two years of life
Secondary Number of Patients With Adverse Events Possibly Related to NAC, Including Rash, Urticaria, Pruritus, Tachycardia, Hypotension, Vomiting, Edema, Anaphylaxis, and Intravenous Line Issues Units are number of patients, higher number is worse outcome Within four weeks after KP
See also
  Status Clinical Trial Phase
Enrolling by invitation NCT03667534 - Dry Blood Spot Screening Test for Neonatal Cholestasis Patients
Completed NCT02652533 - Ultrasound Shear Wave Elastography Evaluation of Suspected and Known Biliary Atresia
Completed NCT01443572 - The Comparison of Desflurane and Sevoflurane on Postoperative Recovery and Hepatic Function of Biliary Atresia Patients During Kasai Operation N/A
Recruiting NCT04373941 - Part II: Granulocyte-Colony Stimulating Factor Adjunct Therapy for Biliary Atresia Phase 2
Completed NCT01854827 - Safety Study of Intravenous Immunoglobulin (IVIG) Post-Portoenterostomy in Infants With Biliary Atresia Phase 1/Phase 2
Completed NCT00007033 - Study of Magnesium Sulfate in Children With Reduced Bone Density Secondary to Chronic Cholestatic Liver Disease N/A
Recruiting NCT05848310 - Preoperative Serum FGF19 in the Prognosis of Biliary Atresia
Recruiting NCT05072626 - High Medium-chain Triglyceride Nutritional Support in Infants With Biliary Atresia
Completed NCT02292862 - Maternal Microchimerism in Lymph Nodes of Infants With Biliary Atresia at Time of Kasai's Operation N/A
Completed NCT00294684 - A Randomized, Double-Blinded, Placebo-Controlled Trial of Corticosteroid Therapy Following Portoenterostomy N/A
Active, not recruiting NCT02922751 - FibroScan™ in Pediatric Cholestatic Liver Disease (FORCE)
Recruiting NCT06184971 - Biliary Atresia Research Network Northeast
Recruiting NCT04260503 - Gut Microbiome in Biliary Atresia
Not yet recruiting NCT06260566 - Tolerability of Enteral NAC in Infants Phase 1
Completed NCT01322386 - Gastrointestinal Microbiota in Primary Sclerosing Cholangitis and Biliary Atresia With Vancomycin Phase 1
Recruiting NCT05909033 - Early Predictors for the Short Term Native Liver Survival in Patients With Biliary Atresia After Kasai Procedure
Recruiting NCT00345553 - Biliary Atresia Study in Infants and Children
Recruiting NCT05521152 - Norepinephrine for Prevention of Intraoperative Hypotension in Infants Undergoing Kasai Portoenterostomy Phase 3
Not yet recruiting NCT05783518 - Effect of Desflurane on Pediatric Acute Respiratory Distress Syndrome After Living Donor Liver Transplant Recipients Phase 4
Not yet recruiting NCT06121375 - Study to Assess Efficacy, Safety, Tolerability, Pharmacokinetics (PK), and Pharmacodynamics (PD) of Obeticholic Acid (OCA) Compared to Placebo in Pediatric Participants With Biliary Atresia, Post-hepatoportoenterostomy Phase 2/Phase 3