Clinical Trials Logo

Clinical Trial Summary

The aim of the study is to develop and validate a novel esophageal mapping system to improve the diagnostics of cardiac arrhythmias. Using a newly designed esophageal ECG catheter, esophageal ECGs (eECGs) will be recorded in 40 patients during an electrophysiological (EP) study and/or ablation procedure and in 12 healthy volunteers. In parallel acquired intracardiac electrograms will serve as reference for the developed mapping systems accuracy. Additionally, the esophageal mapping system will be compared to that of the standard 12-lead surface ECG in regard to its diagnostic performance.


Clinical Trial Description

Background

Cardiac arrhythmias are common and may have devastating consequences for affected patients. To prevent f.e. strokes due to atrial fibrillation, heart failures as a consequence of long-standing tachyarrhythmias or death due to ventricular fibrillation, accurate and timely diagnoses are essential. The standard diagnostic tool for heart rhythm disorders in everyday clinical life is the 12-channel surface electrocardiogram (ECG). However, despite its strengths, the surface ECG suffers from several limitations. Especially on the supraventricular level, the low atrial signal amplitude renders it prone to errors and causes surface ECGs to quickly reach the limits of their diagnostic capacities.

This limitation could be overcome by recordings through the esophagus. Owing the close anatomical relationship, esophageal ECGs have an excellent atrial signal quality. To fully exploit their potential, a novel esophageal ECG catheter (esoECG catheter) with 3-dimensional electrode arrangement was developed. The aim of this study is to use the esoECG-3D catheter to develop and validate a non-invasive esophageal mapping system in order to improve the diagnostics of cardiac arrhythmias and consequently the therapy of patients suffering from these disorders.

Objectives

Primary objective (A1): Development of an esophageal non-invasive mapping system which shall be able to depict

- A1.1: the source of focal triggers

- A1.2: the sequence of cardiac depolarization

with high spatial and temporal resolution.

Secondary objectives (A2):

- A2.1: outperform the diagnostic accuracy of 12-lead ECGs in bedside arrhythmia diagnostics

- A2.2: estimate the speed of myocardial depolarization on the left atrial wall from esophageal ECG tracings

- A2.3: extract respiration signals from esophageal ECG tracings

- A2.4: determine the wearing comfort of the device

- A2.5: determine the operability of the device

Safety objective (A3): Determination of safety of the esoECG-3D catheter for esophageal ECG recordings with respect to:

- A3.1: device related adverse events

- A3.2: device related serious adverse events

- A3.3: device failures, including insertion failure

Methods

Esophageal ECGs will be acquired from a total of 52 participants using the esophageal esoECG-3D catheter. 40 of these will be recorded during an electrophysiological study and/or ablation procedure to obtain a reference (intracardiac measurements) for the evaluation of outcome measures. In a subset of patients, defined pacing maneuvers will be performed; 12-channel ECG and breathing sensor recordings will be obtained from all participants in parallel to eECG measurements. The acquired data will be used for development of algorithms to non-invasively map the hearts depolarization process from recordings in the esophagus. Outcome evaluation will be performed after completion of all measurements and after implementation of the final mapping algorithms. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT03365440
Study type Observational
Source University Hospital Inselspital, Berne
Contact
Status Completed
Phase
Start date December 15, 2017
Completion date November 1, 2019

See also
  Status Clinical Trial Phase
Recruiting NCT05654272 - Development of CIRC Technologies
Terminated NCT04115735 - His Bundle Recording From Subclavian Vein
Completed NCT04571385 - A Study Evaluating the Efficacy and Safety of AP30663 for Cardioversion in Participants With Atrial Fibrillation (AF) Phase 2
Completed NCT05366803 - Women's Health Initiative Silent Atrial Fibrillation Recording Study N/A
Completed NCT02864758 - Benefit-Risk Of Arterial THrombotic prEvention With Rivaroxaban for Atrial Fibrillation in France
Recruiting NCT05442203 - Electrocardiogram-based Artificial Intelligence-assisted Detection of Heart Disease N/A
Completed NCT05599308 - Evaluation of Blood Pressure Monitor With AFib Screening Feature N/A
Completed NCT03790917 - Assessment of Adherence to New Oral anTicoagulants in Atrial Fibrillation patiEnts Within the Outpatient registrY
Enrolling by invitation NCT05890274 - Atrial Fibrillation (AF) and Electrocardiogram (EKG) Interpretation Project ECHO N/A
Recruiting NCT05316870 - Construction and Effect Evaluation of Anticoagulation Management Model in Atrial Fibrillation N/A
Recruiting NCT05266144 - Atrial Fibrillation Patients Treated With Catheter Ablation
Not yet recruiting NCT06023784 - The Impact of LBBAP vs RVP on the Incidence of New-onset Atrial Fibrillation in Patients With Atrioventricular Block N/A
Recruiting NCT05572814 - Transform: Teaching, Technology, and Teams N/A
Recruiting NCT04092985 - Smart Watch iECG for the Detection of Cardiac Arrhythmias
Completed NCT04087122 - Evaluate the Efficiency Impact of Conducting Active Temperature Management During Cardiac Cryoablation Procedures N/A
Completed NCT06283654 - Relieving the Emergency Department by Using a 1-lead ECG Device for Atrial Fibrillation Patients After Pulmonary Vein Isolation
Recruiting NCT05416086 - iCLAS™ Cryoablation System Post-Market Clinical Follow-up (PMCF) Study N/A
Completed NCT05067114 - Solutions for Atrial Fibrillation Edvocacy (SAFE)
Completed NCT04546763 - Study Watch AF Detection At Home
Completed NCT03761394 - Pulsewatch: Smartwatch Monitoring for Atrial Fibrillation After Stroke N/A