Clinical Trials Logo

Clinical Trial Summary

The purpose of this investigation is to obtain more information on the efficacy and safety of respiratory training methods with WellO2 in patients with asthma and COPD. Such a training may offer an additional, non-pharmacological way for treatment and therapy of asthma and COPD.


Clinical Trial Description

Numerous respiratory muscle training (RMT) experiments with healthy subjects, as well as with patients of chronic obstructive pulmonary disease (COPD), bronchiectasis and asthma, have been reported since 80's. Respiratory training with WellO2 device was used in a clinical pilot study by Huttunen and Rantala to investigate effects of steam inhalation and RMT on voice quality in patients with voice symptoms. No adverse effects were found in that study.

The present study is designed to investigate further the RMT and steam inhalation on lung function and respiratory symptoms with subjects suffering from obstructive diseases such as asthma and COPD. The results may be used later in statistical power calculations and to determine the endpoints of larger clinical trial with the investigational device.

Asthma is still an increasing problem in many countries, even though, incidence of the most severe asthma cases is in decline due to earlier diagnosis, better control and earlier intervention practices. The prevalence of asthma and COPD in western countries is around 10 % and 5 %, respectively. The prevalence of COPD is higher in the countries where smoking and poor quality of inhaled air are common.

The treatment of asthma is based on treatment of eosinophilic inflammation of the airways by inhaled corticosteroids and on treatment of bronchoconstriction by sympathomimetic bronchodilators, short-acting and long-acting. The drugs may, however, induce side effects like voice disorders and cardiac symptoms (palpitation, tachycardia and extrasystoles).

Therefore, in many cases the doses of the drugs cannot continuously be kept at the highest effective level. Therefore, non-pharmacological methods can complement the treatment portfolio. The breathing physiotherapy by respiratory muscle training and warm steam inhalation can offer an additive treatment method for patients with airway obstruction.

It is possible that training with the combination of positive counter pressure and steam inhalation methods can induce significant improvement in ventilatory function variables and respiratory symptoms in asthmatics who have kept their ordinary pharmacological therapy at a constant level. Based on the previous scientific evidence found on the public domains, it can be expected that the respiratory muscle strength will be increased offering a possibility for more effective pulmonary mechanics, ventilation and lung volumes. In addition, exhaling against resistance will induce a positive end expiratory pressure (PEEP) effect which can open narrowed airways and make the distribution of alveolar ventilation less heterogeneous. This can improve gas exchange in the lungs and increase the level of low oxygen saturation in arterial blood.

In COPD, drugs can improve the airway changes, irreversible thickening of the airway walls, and chronic inflammation only partially. Therefore, breathing physiotherapy may offer an additive method to improve lung function and gas exchange, and to diminish dyspnoea and other symptoms like cough. The mechanisms of RMT are principally the same in asthma and COPD. Patients with obstructive airway disease frequently have both COPD and asthma, partly reversible or irreversible. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04584398
Study type Interventional
Source WellO2 Oy
Contact Ilpo Kuronen, PhD
Phone +358(0)451393757
Email ilpo.kuronen@wello2.com
Status Recruiting
Phase N/A
Start date August 1, 2020
Completion date March 30, 2021

See also
  Status Clinical Trial Phase
Terminated NCT04410523 - Study of Efficacy and Safety of CSJ117 in Patients With Severe Uncontrolled Asthma Phase 2
Completed NCT04624425 - Additional Effects of Segmental Breathing In Asthma N/A
Active, not recruiting NCT03927820 - A Pharmacist-Led Intervention to Increase Inhaler Access and Reduce Hospital Readmissions (PILLAR) N/A
Completed NCT04617015 - Defining and Treating Depression-related Asthma Early Phase 1
Recruiting NCT03694158 - Investigating Dupilumab's Effect in Asthma by Genotype Phase 4
Terminated NCT04946318 - Study of Safety of CSJ117 in Participants With Moderate to Severe Uncontrolled Asthma Phase 2
Completed NCT04450108 - Vivatmo Pro™ for Fractional Exhaled Nitric Oxide (FeNO) Monitoring in U.S. Asthmatic Patients N/A
Completed NCT03086460 - A Dose Ranging Study With CHF 1531 in Subjects With Asthma (FLASH) Phase 2
Completed NCT01160224 - Oral GW766944 (Oral CCR3 Antagonist) Phase 2
Completed NCT03186209 - Efficacy and Safety Study of Benralizumab in Patients With Uncontrolled Asthma on Medium to High Dose Inhaled Corticosteroid Plus LABA (MIRACLE) Phase 3
Completed NCT02502734 - Effect of Inhaled Fluticasone Furoate on Short-term Growth in Paediatric Subjects With Asthma Phase 3
Completed NCT01715844 - L-Citrulline Supplementation Pilot Study for Overweight Late Onset Asthmatics Phase 1
Terminated NCT04993443 - First-In-Human Study to Evaluate the Safety, Tolerability, Immunogenicity, and Pharmacokinetics of LQ036 Phase 1
Completed NCT02787863 - Clinical and Immunological Efficiency of Bacterial Vaccines at Adult Patients With Bronchopulmonary Pathology Phase 4
Recruiting NCT06033833 - Long-term Safety and Efficacy Evaluation of Subcutaneous Amlitelimab in Adult Participants With Moderate-to-severe Asthma Who Completed Treatment Period of Previous Amlitelimab Asthma Clinical Study Phase 2
Completed NCT03257995 - Pharmacodynamics, Safety, Tolerability, and Pharmacokinetics of Two Orally Inhaled Indacaterol Salts in Adult Subjects With Asthma. Phase 2
Completed NCT02212483 - Clinical Effectiveness and Economical Impact of Medical Indoor Environment Counselors Visiting Homes of Asthma Patients N/A
Recruiting NCT04872309 - MUlti-nuclear MR Imaging Investigation of Respiratory Disease-associated CHanges in Lung Physiology
Withdrawn NCT01468805 - Childhood Asthma Reduction Study N/A
Recruiting NCT05145894 - Differentiation of Asthma/COPD Exacerbation and Stable State Using Automated Lung Sound Analysis With LungPass Device