Artificial Intelligence Clinical Trial
— FracturIAOfficial title:
Optimization of the Diagnosis of Bone FRACtures in Patients Treated in the Emergency Department by Using Artificial Intelligence for Reading Radiological Images in Comparison With Traditional Reading by the Emergency Doctor.
As part of the management of a patient with suspected bone fractures, emergency physicians are required to make treatment decisions before obtaining the imaging reading report from the radiologist, who is generally not available only a few hours after the patient's admission, or even the following day. This situation of the emergency doctor, alone interpreting the radiological image, in a context of limited time due to the large flow of patients to be treated, leads to a significant risk of interpretation error. Unrecognized fractures represent one of the main causes of diagnostic errors in emergency departments. This comparative study consists of two cohorts of patients referred to the emergency department for suspected bone fracture. The first will be of interest to patients whose radiological images will be interpreted by the reading of the emergency doctor systematically doubled by the reading of the artificial intelligence. The other will interest a group of patients cared for by the simple reading of the emergency doctor. All of the images from both groups of patients will be re-read by the establishment's group of radiologists no later than 24 hours following the patient's treatment. A centralized review will be provided by two expert radiologists. Also, patients in both groups will be systematically recalled in the event of detection of an unknown fracture for hospitalization.
Status | Recruiting |
Enrollment | 1500 |
Est. completion date | October 11, 2025 |
Est. primary completion date | September 11, 2024 |
Accepts healthy volunteers | No |
Gender | All |
Age group | 18 Years and older |
Eligibility | Inclusion Criteria: - Major Subject - Patient admitted to the emergency department for suspected peripheral fractures in the extremities of the upper limb and/or lower limb (wrist/hand and ankle/foot). - Patient affiliated to or entitled to a social security system - Patient having received written and informed information about the study and having signed a free and informed consent to participate in the study. Exclusion Criteria: - Patient previously admitted to the emergency room for suspicion of fractures and not included in the study - Patient admitted to the emergency room with suspicion of multiple fractures - Refusal to participate in the study - Protected patient: adult under guardianship, curatorship or other legal protection, deprived of liberty by judicial or administrative decision and under judicial protection - Pregnant, breastfeeding or parturient patient |
Country | Name | City | State |
---|---|---|---|
France | Clinique Esquirol Saint Hilaire | Agen |
Lead Sponsor | Collaborator |
---|---|
Elsan | Clinique Esquirol Saint Hilaire |
France,
Type | Measure | Description | Time frame | Safety issue |
---|---|---|---|---|
Primary | Patient readmission rate for failure to diagnose fracture during initial treatment. | This rate will be determined in each group (reading by the emergency doctor systematically doubled by the reading of the AI vs. simple reading by the emergency doctor) compared to centralized rereading. | 1 day |
Status | Clinical Trial | Phase | |
---|---|---|---|
Completed |
NCT04589078 -
Polyp REcognition Assisted by a Device Interactive Characterization Tool - The PREDICT Study
|
||
Completed |
NCT03857438 -
Correlation of Audiovisual Features With Clinical Variables and Neurocognitive Functions in Bipolar Disorder, Mania
|
||
Completed |
NCT04735055 -
Artificial Intelligence Prediction for the Severity of Acute Pancreatitis
|
||
Not yet recruiting |
NCT05452993 -
Screening for Diabetic Retinopathy in Pharmacies With Artificial Intelligence Enhanced Retinophotography
|
N/A | |
Not yet recruiting |
NCT04337229 -
Evaluation of Comfort Behavior Levels of Newborns With Artificial Intelligence Techniques
|
N/A | |
Completed |
NCT05687318 -
A Clinical Trial of the Effectiveness and Safety of Software Assisting Diagnose the Intestinal Polyp Digestive Endoscopy by Analysis of Colonoscopy Medical Images From Electronic Digestive Endoscopy Equipment
|
N/A | |
Not yet recruiting |
NCT06039917 -
Effect of the Automatic Surveillance System on Surveillance Rate of Patients With Gastric Premalignant Lesions
|
N/A | |
Not yet recruiting |
NCT06362629 -
AI App for Management of Atopic Dermatitis
|
N/A | |
Recruiting |
NCT06059378 -
Real-life Implementation of an AI-based Optical Diagnosis
|
N/A | |
Recruiting |
NCT06164002 -
A I in the Prediction of Clinical Performance, Marginal Fit and Fracture Resistance of Vertical Versus Horizontal Margin Designs Fabricated With 2 Ceramic Materials
|
N/A | |
Completed |
NCT05517889 -
Repeatability and Stability of Healthy Skin Features on OCT
|
||
Completed |
NCT05006092 -
Surveillance Modified by Artificial Intelligence in Endoscopy (SMARTIE)
|
N/A | |
Completed |
NCT04816981 -
AI-EBUS-Elastography for LN Staging
|
N/A | |
Recruiting |
NCT04535466 -
Diagnosis Predictive Modle for Dense Density Breast Tissue Based on Radiomics
|
||
Enrolling by invitation |
NCT04719117 -
Retrograde Cholangiopancreatography AI Assisted System Validation on Effectiveness and Safety
|
||
Completed |
NCT04399590 -
Comparing the Number of False Activations Between Two Artificial Intelligence CADe Systems: the NOISE Study
|
||
Recruiting |
NCT04126265 -
Artificial Intelligence-assisted Colonoscopy for Detection of Colon Polyps
|
N/A | |
Recruiting |
NCT06255808 -
Development of Assist Tool for Breast Examination Using the Principle of Ultrasonic Sensor
|
||
Recruiting |
NCT04131530 -
Automatic Evaluation of Inflammation Activity in Ulcerative Colitis Using pCLE With Artificial Intelligence
|
||
Recruiting |
NCT04598997 -
Artificial Intelligence With DEep Learning on COROnary Microvascular Disease
|