Clinical Trials Logo

Anemia, Diamond-Blackfan clinical trials

View clinical trials related to Anemia, Diamond-Blackfan.

Filter by:

NCT ID: NCT03050268 Recruiting - Pancreatic Cancer Clinical Trials

Familial Investigations of Childhood Cancer Predisposition

SJFAMILY
Start date: April 6, 2017
Phase:
Study type: Observational

NOTE: This is a research study and is not meant to be a substitute for clinical genetic testing. Families may never receive results from the study or may receive results many years from the time they enroll. If you are interested in clinical testing please consider seeing a local genetic counselor or other genetics professional. If you have already had clinical genetic testing and meet eligibility criteria for this study as shown in the Eligibility Section, you may enroll regardless of the results of your clinical genetic testing. While it is well recognized that hereditary factors contribute to the development of a subset of human cancers, the cause for many cancers remains unknown. The application of next generation sequencing (NGS) technologies has expanded knowledge in the field of hereditary cancer predisposition. Currently, more than 100 cancer predisposing genes have been identified, and it is now estimated that approximately 10% of all cancer patients have an underlying genetic predisposition. The purpose of this protocol is to identify novel cancer predisposing genes and/or genetic variants. For this study, the investigators will establish a Data Registry linked to a Repository of biological samples. Health information, blood samples and occasionally leftover tumor samples will be collected from individuals with familial cancer. The investigators will use NGS approaches to find changes in genes that may be important in the development of familial cancer. The information gained from this study may provide new and better ways to diagnose and care for people with hereditary cancer. PRIMARY OBJECTIVE: - Establish a registry of families with clustering of cancer in which clinical data are linked to a repository of cryopreserved blood cells, germline DNA, and tumor tissues from the proband and other family members. SECONDARY OBJECTIVE: - Identify novel cancer predisposing genes and/or genetic variants in families with clustering of cancer for which the underlying genetic basis is unknown.

NCT ID: NCT02720679 Recruiting - Clinical trials for Myelodysplastic Syndromes

Investigation of the Genetics of Hematologic Diseases

Start date: June 17, 2016
Phase:
Study type: Observational [Patient Registry]

The purpose of this study is to collect and store samples and health information for current and future research to learn more about the causes and treatment of blood diseases. This is not a therapeutic or diagnostic protocol for clinical purposes. Blood, bone marrow, hair follicles, nail clippings, urine, saliva and buccal swabs, left over tissue, as well as health information will be used to study and learn about blood diseases by using genetic and/or genomic research. In general, genetic research studies specific genes of an individual; genomic research studies the complete genetic makeup of an individual. It is not known why many people have blood diseases, because not all genes causing these diseases have been found. It is also not known why some people with the same disease are sicker than others, but this may be related to their genes. By studying the genomes in individuals with blood diseases and their family members, the investigators hope to learn more about how diseases develop and respond to treatment which may provide new and better ways to diagnose and treat blood diseases. Primary Objective: - Establish a repository of DNA and cryopreserved blood cells with linked clinical information from individuals with non-malignant blood diseases and biologically-related family members, in conjunction with the existing St. Jude biorepository, to conduct genomic and functional studies to facilitate secondary objectives. Secondary Objectives: - Utilize next generation genomic sequencing technologies to Identify novel genetic alternations that associate with disease status in individuals with unexplained non-malignant blood diseases. - Use genomic approaches to identify modifier genes in individuals with defined monogenic non-malignant blood diseases. - Use genomic approaches to identify genetic variants associated with treatment outcomes and toxicities for individuals with non-malignant blood disease. - Use single cell genomics, transcriptomics, proteomics and metabolomics to investigate biomarkers for disease progression, sickle cell disease (SCD) pain events and the long-term cellular and molecular effects of hydroxyurea therapy. - Using longitudinal assessment of clinical and genetic, study the long-term outcomes and evolving genetic changes in non-malignant blood diseases. Exploratory Objectives - Determine whether analysis of select patient-derived bone marrow hematopoietic progenitor/stem (HSPC) cells or induced pluripotent stem (iPS) cells can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms. - Determine whether analysis of circulating mature blood cells and their progenitors from selected patients with suspected or proven genetic hematological disorders can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms.

NCT ID: NCT02512679 Completed - Thalassemia Clinical Trials

Related Hematopoietic Stem Cell Transplantation (HSCT) for Genetic Diseases of Blood Cells

Start date: February 2007
Phase: Phase 2
Study type: Interventional

Many genetic diseases of lymphohematopoietic cells (such as sickle cell anemia, thalassemia, Diamond-Blackfan anemia, Combined Immune Deficiency (CID), Wiskott-Aldrich syndrome, chronic granulomatous disease, X-linked lymphoproliferative disease, and metabolic diseases affecting hematopoiesis) are sublethal diseases caused by mutations that adversely affect the development or function of different types of blood cells. Although pathophysiologically diverse, these genetic diseases share a similar clinical course of significant progressive morbidity, overall poor quality of life, and ultimate death from complications of the disease or its palliative treatment. Supportive care for these diseases includes chronic transfusion, iron chelation, and surgery (splenectomy or cholecystectomy) for the hemoglobinopathies; prophylactic antibiotics, intravenous immunoglobulin, and immunomodulator therapies for the immune deficiencies; and enzyme replacement injections and dietary restriction for some of the metabolic diseases. The suboptimal results of such supportive care measures have led to efforts to implement more aggressive therapeutic interventions to cure these lymphohematopoietic diseases. The most logical strategies for cure of these diseases have been either replacement of the patient's own hematopoietic stem cells (HSC) with those derived from a normal donor allogeneic bone marrow transplant (BMT) or hematopoietic stem cell transplant (HSCT), or to genetically modify the patient's own stem cells to replace the defective gene (gene therapy).

NCT ID: NCT02386267 Recruiting - Clinical trials for Diamond Blackfan Anemia

L-leucine in Diamond Blackfan Anemia Patients

Start date: September 2014
Phase: Phase 2
Study type: Interventional

Diamond-Blackfan anemia (DBA) is a rare congenital syndrome associated with physical anomalies, short stature, red cell aplasia, and an increased risk of malignancy. Mutations affecting genes encoding ribosomal proteins cause DBA. Genetic studies have identified heterozygous mutations in at least one of eight ribosomal protein genes in up to 50% of cases. 25% of patients carry a mutation in the ribosomal protein (RP)S19 gene, whereas mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 are rare. p53 activation has been identified as a key component in the pathophysiology of DBA after cellular and molecular studies. Other potential mechanisms that warrant further investigation include impaired translation as the result of ribosomal insufficiency, which may be ameliorated by Leucine supplementation. Despite significant improvements in understanding of the pathophysiology of Diamond Blackfan anemia (DBA), there have been few advances in therapy. The cornerstones of treatment remain corticosteroids,chronic red blood cell transfusions, and hematopoietic stem cell transplantation, each of which is fraught with complications. Other treatments have been shown to be effective in only a few patients or in individual case reports : IL-3, cyclosporine (alone or in combination with steroids), metaclopramide. Gene therapy is still a part of research programs. There are some indications that the Amino Acid (AA) L-leucine, a translation enhancer, may have some efficacy in DBA and 5q-syndrome, which has the same altered ribosome functions as the DBA. L-leucine is an essential AA that is unique among the branched-chain AA acting as a nutrient regulator of protein synthesis in skeletal muscle and adipose tissue. Several preclinical studies with DBA lymphocytes exposed to various L-leucine doses, have demonstrated that protein synthesis can be increased by using high doses L-leucine. Recent clinical data on L-leucine therapeutic use have demonstrated increase the hemoglobin level and transfusion independence in patients with DBA and 5q-syndrom. These data support the rationale for clinical trial on L-leucine use as a therapeutic agent for DBA patients.

NCT ID: NCT02179359 Recruiting - Sickle Cell Disease Clinical Trials

Hematopoietic Stem Cell Transplant for High Risk Hemoglobinopathies

Start date: September 2, 2014
Phase: N/A
Study type: Interventional

This is a study to collect the outcomes of stem cell transplantation for patients with hematologic diseases other than cancer.

NCT ID: NCT02065869 Terminated - Clinical trials for Acute Lymphoblastic Leukemia

Safety Study of Gene Modified Donor T-cells Following TCRαβ+ Depleted Stem Cell Transplant

Start date: April 2014
Phase: Phase 1/Phase 2
Study type: Interventional

This study will evaluate pediatric patients with malignant or non-malignant blood cell disorders who are having a blood stem cell transplant depleted of T cell receptor (TCR) alfa and beta cells that comes from a partially matched family donor. The study will assess whether immune cells, called T cells, from the family donor, that are specially grown in the laboratory and given back to the patient along with the stem cell transplant can help the immune system recover faster after transplant. As a safety measure these T cells have been programmed with a self-destruct switch so that they can be destroyed if they start to react against tissues (Graft versus host disease).

NCT ID: NCT01966367 Active, not recruiting - Sickle Cell Disease Clinical Trials

CD34+ (Non-Malignant) Stem Cell Selection for Patients Receiving Allogeneic Stem Cell Transplantation

Start date: March 2013
Phase: Phase 1/Phase 2
Study type: Interventional

This study's goal is to determine the frequency and severity of acute graft versus host disease, to evaluate incidence of primary and secondary graft rejection, to assess event free survival and overall survival, to determine the time to neutrophil and platelet engraftment, to determine the time to immune reconstitution (including normalization of T, B and natural killer (NK) cell repertoire and Immunoglobulin G production), and to establish the incidence of infectious complications including bacterial, viral, fungal and atypical mycobacterial and other infections following CD34+ selection in children, adolescents and young adults receiving an allogeneic peripheral blood stem cell transplant from a family member or unrelated adult donor for a non-malignant disease.

NCT ID: NCT01917708 Completed - Sickle Cell Disease Clinical Trials

Bone Marrow Transplant With Abatacept for Non-Malignant Diseases

Start date: January 2014
Phase: Phase 1
Study type: Interventional

This is a single arm, phase I study to assess the tolerability of abatacept when combined with cyclosporine and mycophenolate mofetil as graft versus host disease prophylaxis in children undergoing unrelated hematopoietic stem cell transplant for serious non-malignant diseases as well as to assess the immunological effects of abatacept. Participants will be followed for 2 years.

NCT ID: NCT01913548 Completed - Sickle Cell Disease Clinical Trials

Multi-Center Study of Iron Overload: Survey Study (MCSIO)

MCSIO
Start date: March 31, 2010
Phase:
Study type: Observational

The purpose of this study is to demonstrate that a sufficient number of iron-overloaded thalassemia (THAL), Sickle Cell Disease (SCD)and Diamond Blackfan Anemia (DBA) populations with similar duration of chronic transfusion, and age at start of transfusions would be available for a confirmatory study. The study will examine the hypothesis that a chronic inflammatory state in SCD leads to hepcidin- and cytokine-mediated iron withholding within the RES (reticuloendothelial system), lower plasma NTBI (non-transferrin bound iron) levels, less distribution of iron to the heart in SCD.

NCT ID: NCT01758042 Recruiting - Multiple Myeloma Clinical Trials

Bone Marrow and Kidney Transplant for Patients With Chronic Kidney Disease and Blood Disorders

BMT
Start date: November 2012
Phase: N/A
Study type: Interventional

The main purpose of this study is to examine the outcome of a combined bone marrow and kidney transplant from a partially matched related (haploidentical or "haplo") donor. This is a pilot study, you are being asked to participate because you have a blood disorder and kidney disease. The aim of the combined transplant is to treat both your underlying blood disorder and kidney disease. We expect to have about 10 people participate in this study. Additionally, because the same person who is donating the kidney will also be donating the bone marrow, there may be a smaller chance of kidney rejection and less need for long-term use of anti-rejection drugs. Traditionally, very strong cancer treatment drugs (chemotherapy) and radiation are used to prepare a subject's body for bone marrow transplant. This is associated with a high risk for serious complications, even in subjects without kidney disease. This therapy can be toxic to the liver, lungs, mucous membranes, and intestines. Additionally, it is believed that standard therapy may be associated with a higher risk of a complication called graft versus host disease (GVHD) where the new donor cells attack the recipient's normal body. Recently, less intense chemotherapy and radiation regimens have been employed (these are called reduced intensity regimens) which cause less injury and GVHD to patients, and thus, have allowed older and less healthy patients to undergo bone marrow transplant. In this study, a reduced intensity regimen of chemotherapy and radiation will be used with the intent of producing fewer toxicities than standard therapy. Typical therapy following a standard kidney transplant includes multiple lifelong medications that aim to prevent the recipient's body from attacking or rejecting the donated kidney. These are called immunosuppressant drugs and they work by "quieting" the recipient's immune system to allow the donated kidney to function properly. One goal in our study is to decrease the duration you will need to be on immunosuppressant drugs following your kidney transplant as the bone marrow transplant will provide you with the donor's immune system which should not attack the donor kidney.