Clinical Trials Logo

Anaplastic Large Cell Lymphoma clinical trials

View clinical trials related to Anaplastic Large Cell Lymphoma.

Filter by:

NCT ID: NCT01777152 Completed - Clinical trials for Non-Hodgkin Lymphoma

ECHELON-2: A Comparison of Brentuximab Vedotin and CHP With Standard-of-care CHOP in the Treatment of Patients With CD30-positive Mature T-cell Lymphomas

ECHELON-2
Start date: January 31, 2013
Phase: Phase 3
Study type: Interventional

This is a double-blind, randomized, multicenter, phase 3 clinical trial to compare the efficacy and safety of brentuximab vedotin in combination with CHP with the standard-of-care CHOP in patients with CD30-positive mature T-cell lymphomas.

NCT ID: NCT01748721 Completed - Clinical trials for Unspecified Adult Solid Tumor, Protocol Specific

MORAb-004 in Treating Young Patients With Recurrent or Refractory Solid Tumors or Lymphoma

Start date: November 2013
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and best dose of MORAb-004 in treating young patients with recurrent or refractory solid tumors or lymphoma. Monoclonal antibodies, such as MORAb-004, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them

NCT ID: NCT01686165 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Belinostat and Yttrium Y 90 Ibritumomab Tiuxetan in Patients W/Relapsed Aggressive B-Cell NHL

Start date: August 31, 2012
Phase: Phase 2
Study type: Interventional

This study looks at what effects (good and bad) a drug called PXD-101 (belinostat) in combination with the radioactive drug Zevalin (yttrium Y 90 ibritumomab tiuxetan) has on patients with relapsed aggressive (high-risk) non-Hodgkin lymphoma. Studies in the laboratory suggest that drugs such as PXD101 can act upon specific cancer cell processes to cause either death of the cancer cells or prevention of their growth. In human studies with a small number of patients with this lymphoma, PXD-101 has shown the ability to shrink and slow tumor growth. When Zevalin is delivered directly to the tumor, the lymphoma cells are destroyed and this may result in the disappearance of the tumor (remission)

NCT ID: NCT01658319 Completed - Clinical trials for Recurrent Mantle Cell Lymphoma

Methoxyamine and Fludarabine Phosphate in Treating Patients With Relapsed or Refractory Hematologic Malignancies

Start date: May 2011
Phase: Phase 1
Study type: Interventional

This phase I trial is studying the side effects and best dose of methoxyamine when given together with fludarabine phosphate in treating patients with relapsed or refractory hematologic malignancies. Drugs used in chemotherapy, such as methoxyamine and fludarabine phosphate, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving methoxyamine together with fludarabine phosphate may kill more cancer cells.

NCT ID: NCT01657331 Completed - Hodgkin Lymphoma Clinical Trials

Brentuximab Vedotin and Bendamustine for the Treatment of Hodgkin Lymphoma and Anaplastic Large Cell Lymphoma (ALCL)

SGN+Benda
Start date: July 2012
Phase: Phase 1/Phase 2
Study type: Interventional

This is a phase 1/2 multicenter study to assess the safety and effectiveness of brentuximab vedotin and bendamustine, when given together, in patients with Hodgkin Lymphoma or Anaplastic Large Cell Lymphoma (ALCL) that has either returned or did not respond to initial treatment(s). Patients will be accrued at Columbia University Medical Center (CUMC) and at two subsites in Canada.

NCT ID: NCT01588015 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies Undergoing Donor Stem Cell Transplant

Start date: October 29, 2012
Phase: Phase 1
Study type: Interventional

This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.

NCT ID: NCT01567709 Completed - Clinical trials for Chronic Lymphocytic Leukemia

Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma

Start date: April 16, 2012
Phase: Phase 1
Study type: Interventional

This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01529827 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Fludarabine Phosphate, Melphalan, and Low-Dose Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies

Start date: February 28, 2012
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening

NCT ID: NCT01466881 Completed - Clinical trials for Anaplastic Large Cell Lymphoma

Alisertib in Treating Patients With Relapsed or Refractory Peripheral T-Cell Non-Hodgkin Lymphoma

Start date: October 2011
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well alisertib works in treating patients with peripheral T-cell non-Hodgkin lymphoma that has come back after a period of improvement or has not responded to treatment. Alisertib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

NCT ID: NCT01427881 Completed - Clinical trials for Chronic Myelomonocytic Leukemia

Cyclophosphamide for Prevention of Graft-Versus-Host Disease After Allogeneic Peripheral Blood Stem Cell Transplantation in Patients With Hematological Malignancies

Start date: September 2011
Phase: Phase 2
Study type: Interventional

This phase II trial studies how well cyclophosphamide works in preventing chronic graft-versus-host disease after allogeneic peripheral blood stem cell transplant in patients with hematological malignancies. Giving chemotherapy and total-body irradiation before transplantation helps stop the growth of cancer cells and prevents the patient's immune system from rejecting the donor's stem cells. Healthy stem cells from a donor that are infused into the patient help the patient's bone marrow make blood cells; red blood cells, white blood cells, and platelets. Sometimes, however, the transplanted donor cells can cause an immune response against the body's normal cells, which is called graft-versus-host disease (GVHD). Giving cyclophosphamide after transplant may prevent this from happening or may make chronic GVHD less severe.