Clinical Trials Logo

Clinical Trial Summary

Women are at increased risk for Alzheimer's disease (AD). Notably at menopause, some women experience a change in cognition. However, not all women experience negative effects of menopause on cognition. The cognitive changes that occur at menopause have not yet been connected to late life risk for pathological aging including AD. Thus, understanding the neurobiological factors related to individual differences in cognition at menopause is critical for understanding normal cognitive aging and for determining risk for pathological aging. The challenge in understanding the role of estrogen loss on the risk for AD is the long lag time between the hormonal changes at menopause and the clinical manifestations of AD. Thus, identifying how the hormone changes after menopause are related to AD risk will alter the risk calculus for postmenopausal women in the future. The novel study proposed here will examine an established AD-related neurotransmitter-based mechanism that may also underlie cognitive changes after menopause. The investigators propose that the change in the hormonal milieu at menopause interacts with the cholinergic system and other brain pathologies to influence a woman's risk for cognitive decline. Preclinical studies have shown that estrogen is necessary for normal cholinergic functioning and its withdrawal leads to cholinergic dysfunction and cognitive impairment. It is important to determine whether menopause-related cognitive changes correlate with both cholinergic functional integrity and established AD biomarkers that portend increased risk for late-life cognitive impairment or dementia. This study will examine brain functioning following cholinergic blockade to separate individuals into those who are able to compensate for the hormone change after menopause and those who are not. The investigators hypothesize women with poor compensation have increased sensitivity to cholinergic blockade by showing poor performance on a cognitive task, altered brain activation, and decreased basal forebrain cholinergic system (BFCS) volume. These cholinergic markers will be related to menopausal factors associated with poor cognition and biomarkers of AD. Specific Aim 1 is to examine cholinergic functional "integrity" by measuring working memory performance, functional brain activation, and BFCS structure in postmenopausal women. Specific Aim 2 will examine whether individual differences in menopause-relevant symptoms and known AD biomarkers are related to cognition and brain activation after anticholinergic challenge. The public health significance of this study is that it will identify individual difference factors that are associated with cognitive performance changes after menopause and their relationship to structural, functional, and biomarker evidence of risk for later life cognitive dysfunction. Knowledge of these factors will serve to advance personalized future risk-mitigation strategies for women including hormonal, medication, cognitive remediation, etc. that will be the subject of further research.


Clinical Trial Description

The brain is a major target for circulating gonadal steroids and the change in hormone levels after menopause is likely to have implications for cognitive functioning. A number of clinical and preclinical studies have linked gonadal steroids and cognition (e.g.1,2) and it has been hypothesized that menopause has detrimental effects on cognition that are over and above the expected effects of normal aging. While menopause results in reproductive senescence, most of the symptoms of menopause are neurological3. However, evidence for changes in brain functioning after menopause is equivocal. Some studies found that cognitive performance after menopause decreased in domains such as memory, attention, problem solving, and motor skills from pre-menopausal levels (e.g.1,4,5). As many as 60% of women reported undesirable memory changes at mid-life6. Other studies have not found changes in cognition after menopause (e.g.7-9) and not all women experience negative effects of menopause on cognition10. However, women have a higher risk of dementia compared to men11 and many hypotheses identify the sex differences in gonadal steroids and the hormone change at menopause as related to risk for Alzheimer's disease (AD) and/or dementia. The challenge in understanding the role of estrogen loss on the risk for AD is the long lag time between the hormonal changes at menopause and the clinical manifestations of AD. Thus, identifying how the hormone changes after menopause are related to AD risk will alter the risk calculus for postmenopausal women in the future. In addition, the neurobiological processes underlying how the change in the hormonal environment at menopause influences brain functioning, what factors are responsible for individual differences in cognition after menopause, and what menopause-related symptoms are associated with risk for dementia are not well understood. One mechanism hypothesized to be responsible for cognitive changes post menopause is the effect of decreased estradiol on the functioning of neurotransmitter systems that support cognition. The importance of the estrogen-cholinergic system interaction for cognition has been demonstrated across a number of model systems from rats12 to non-human primates13 to humans14. The investigators have shown that estrogen's interaction with the cholinergic system is important for cognitive functioning in postmenopausal women14-16. What has not not yet shown is how change in cholinergic system functioning as a result of menopause is related to menopausal signs/symptoms that influence cognition as well as AD biomarkers like amyloid, tau, and neurodegeneration. These are important relationships to understand and may lead to individual risk profiles that can be observed earlier in the aging process while treatment and prevention strategies may be effective. This project will investigate the role of cholinergic system in cognitive functioning in women after menopause. We have been examining the interaction of the neurotransmitter acetylcholine with hormones after menopause for a number of years14-16. In these studies with intensive repeated measures designs where the sample sizes were relatively small, findings generally showed no benefit of estrogen therapy alone for cognition in normal women post menopause. However, if the investigators induced a temporary impairment in the cholinergic system, the beneficial effect of estradiol became manifest15 and this was more prominent in younger postmenopausal women aged 50-60 compared to older women aged 70-8014. Furthermore, these studies showed significant heterogeneity of individual responses with roughly 50% of women showing either compensatory or impaired responses suggesting individual differences in risk profile (see preliminary data). What has not yet demonstrated is how the sensitivity of the cholinergic system to temporary blockade is related to menopause symptoms and known AD biomarkers that are associated with increased risk for AD development or frank dementia. The investigators propose that cholinergic antagonist drugs can be used to expose the effects of menopause on cognitive functioning. Decreased cognitive performance during a temporary cholinergic blockade "lesion" may be an indicator of susceptibility to the negative effects of hormone withdrawal on the brain and risk for age-related cognitive impairment and/or dementia. The study proposed here will be the first to link cholinergic sensitivity to biomarkers of neurodegeneration and AD pathology. Specifically, the study will investigate working memory performance and brain activation during a cholinergic antagonist challenge compared to placebo and examine how factors associated with menopause like gonadal steroids, autonomic symptoms, mood, and sleep as well as known biomarkers associated with Alzheimer's disease (e.g. age, subjective cognitive complaints, hippocampal and basal forebrain volume, beta amyloid, and tau load) combine to predict which women are likely to experience cognitive impairment during the cholinergic challenge procedure. The results from this study will further the understanding of the neurotransmitter-based mechanisms responsible for cognitive changes after menopause and how these may predict late life cognitive dysfunction. After an examination of the neurobiology underlying the cognitive change at menopause, future studies can develop strategies to mitigate pathological processes that are enhanced by the menopausal hormone change. ;


Study Design


Related Conditions & MeSH terms


NCT number NCT04129060
Study type Interventional
Source University of Vermont
Contact Jenna Makarewicz, BS
Phone (802)847-8248
Email jenna.makarewicz@uvmhealth.org
Status Recruiting
Phase Early Phase 1
Start date March 15, 2020
Completion date May 31, 2024

See also
  Status Clinical Trial Phase
Completed NCT04044495 - Sleep, Rhythms and Risk of Alzheimer's Disease N/A
Completed NCT04079803 - PTI-125 for Mild-to-moderate Alzheimer's Disease Patients Phase 2
Terminated NCT03052712 - Validation and Standardization of a Battery Evaluation of the Socio-emotional Functions in Various Neurological Pathologies N/A
Recruiting NCT04520698 - Utilizing Palliative Leaders In Facilities to Transform Care for Alzheimer's Disease N/A
Active, not recruiting NCT04606420 - Can Lifestyle Changes Reverse Early-Stage Alzheimer's Disease N/A
Recruiting NCT05820919 - Enhancing Sleep Quality for Nursing Home Residents With Dementia - R33 Phase N/A
Terminated NCT03672474 - REGEnLIFE RGn530 - Feasibility Pilot N/A
Completed NCT03430648 - Is Tau Protein Linked to Mobility Function?
Recruiting NCT05557409 - A Study to Assess the Efficacy and Safety of AXS-05 in Subjects With Alzheimer's Disease Agitation Phase 3
Recruiting NCT04949750 - Efficacy of Paper-based Cognitive Training in Vietnamese Patients With Early Alzheimer's Disease N/A
Recruiting NCT04522739 - Spironolactone Safety in African Americans With Mild Cognitive Impairment and Early Alzheimer's Disease Phase 4
Recruiting NCT05288842 - Tanycytes in Alzheimer's Disease and Frontotemporal Dementia
Completed NCT06194552 - A Multiple Dose Study of the Safety and Pharmacokinetics of NTRX-07 Phase 1
Completed NCT03239561 - Evaluation of Tau Protein in the Brain of Participants With Alzheimer's Disease Compared to Healthy Participants Early Phase 1
Completed NCT03184467 - Clinical Trial to Evaluate the Efficacy and Safety of GV1001 in Alzheimer Patients Phase 2
Active, not recruiting NCT03676881 - Longitudinal Validation of a Computerized Cognitive Battery (Cognigram) in the Diagnosis of Mild Cognitive Impairment and Alzheimer's Disease
Terminated NCT03487380 - Taxonomic and Functional Composition of the Intestinal Microbiome: a Predictor of Rapid Cognitive Decline in Patients With Alzheimer's Disease N/A
Completed NCT05538455 - Investigating ProCare4Life Impact on Quality of Life of Elderly Subjects With Neurodegenerative Diseases N/A
Recruiting NCT05328115 - A Study on the Safety, Tolerability and Immunogenicity of ALZ-101 in Participants With Early Alzheimer's Disease Phase 1
Completed NCT05562583 - SAGE-LEAF: Reducing Burden in Alzheimer's Disease Caregivers Through Positive Emotion Regulation and Virtual Support N/A