Clinical Trials Logo

Clinical Trial Details — Status: Recruiting

Administrative data

NCT number NCT04661735
Other study ID # ICURS
Secondary ID
Status Recruiting
Phase
First received
Last updated
Start date January 1, 2006
Est. completion date December 31, 2025

Study information

Verified date September 2023
Source Charite University, Berlin, Germany
Contact Felix Balzer, Prof
Email data-science@charite.de
Is FDA regulated No
Health authority
Study type Observational

Clinical Trial Summary

Subject of the planned project is the retrospective analysis of routine data of digital patient files of the Department for Anaesthesiology and Surgical Intensive Care Medicine, to test whether the predictive values of intensive care scoring systems with regard to perioperative mortality and morbidity can be improved by continuous score calculation and by using machine learning and time series analysis methods.


Description:

A scoring system usually consists of two parts - a score (a number reflecting the severity of the disease) and a probability model (equation indicating the probability of an event, e.g. the death of the patient in hospital). Scoring systems have been used in intensive care medicine for decades and can help to assess the effectiveness of treatment or identify comparable patients for study purposes. Scoring systems that are used in intensive care medicine are for example - Acute Physiology, Age, Chronic Health Evaluation II (APACHE II) - Simplified Acute Physiology Score II (SAPS II) - Multiple Organ Dysfunction Score (MODS) - Sequential Organ Failure Assessment (SOFA) - Logistic Organ Dysfunction System (LODS) - MPM II-Admission (Mortality Probability Models (MPM II) - Organ Dysfunction and Infection score (ODIN) - Three-Day Recalibrating ICU Outcomes (TRIOS) - Glasgow coma score (GCS) - Discharge Readiness Score (DRS) The above-mentioned scoring systems are already being collected regularly in the respective hospital's departments. In a recent study by Badawi et al. it could be shown that scoring systems allow more accurate predictions when calculated continuously. However, due to the patient collectives investigated, these results can only be transferred to other patient groups to a limited extent. Furthermore, only the scoring systems APACHE, SOFA and DRS were analyzed. Therefore, in the present study, all of the above scoring systems will be calculated continuously (once per minute) using routine data from the digital patient records and optimized by applying machine learning and methods of time series analysis. On the anesthesiologically managed intensive care units of the respective hospital, there is no campus-wide standard with regard to alarm management. Accordingly, we estimate the rate of alarm fatigue (ignoring alarms due to many false alarms) to be very high. In order to optimize the alarm management, alarms from the patient monitoring devices will be evaluated retrospectively and combined with the data mentioned above to determine, for example, whether more frequent alarms are to be expected for certain types of diseases (e.g. sepsis), or scores (e.g., high APACHE score) and how the alarm limit setting can be optimized.


Recruitment information / eligibility

Status Recruiting
Enrollment 60000
Est. completion date December 31, 2025
Est. primary completion date September 30, 2025
Accepts healthy volunteers
Gender All
Age group 18 Years and older
Eligibility Inclusion Criteria: - Patients with admission between 01.01.2006 and 30.09.2023 Exclusion Criteria: - Patients under 18 years of age. - Incomplete patient records. - Intensive stay of less than 24 hours.

Study Design


Related Conditions & MeSH terms


Locations

Country Name City State
Germany Charite Universtitaetsmedizin Berlin

Sponsors (1)

Lead Sponsor Collaborator
Charite University, Berlin, Germany

Country where clinical trial is conducted

Germany, 

Outcome

Type Measure Description Time frame Safety issue
Primary Prediction of patient outcome Identification of scores with a high on impact mortality, complications and length of stay in the intensive care unit 2006 - 2023
Secondary Predictive model for alarm load Identification of items leading to a high alarm load measured by number of alarm per day per bed in the intensive care unit 2020 - 2023
Secondary Predictive model for actionable alarms Identification of items leading to a high number of actionable alarms measured by number of actionable alarms per day per bed in the intensive care unit 2020 - 2023
See also
  Status Clinical Trial Phase
Completed NCT04994600 - Design and Validation of a German Language Questionnaire for Measuring Alarm Fatigue in Intensive Care Units
Not yet recruiting NCT06403397 - Assessing the Impact of Monitor Maintenance Package Utilization N/A