Acute Myeloid Leukemia Clinical Trial
Official title:
Infusion of Off-the-Shelf Ex Vivo Expanded Cryopreserved Progenitor Cells to Facilitate the Engraftment of a Single CCR5Δ32 Homozygous or Heterozygous Cord Blood Unit in Patients With HIV and Hematological Malignancies
This phase II trial studies the side effects of a cord blood transplant using dilanubicel and to see how well it works in treating patients with human immunodeficiency virus (HIV) positive hematologic (blood) cancers. After a cord blood transplant, the immune cells, including white blood cells, can take a while to recover, putting the patient at increased risk of infection. Dilanubicel consists of blood stem cells that help to produce mature blood cells, including immune cells. Drugs used in chemotherapy, such as fludarabine, cyclophosphamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Total body irradiation is a type of whole-body radiation. Giving chemotherapy and total-body irradiation before a cord blood transplant with dilanubicel may help to kill any cancer cells that are in the body and make room in the patient's bone marrow for new stem cells to grow and reduce the risk of infection.
OUTLINE: Patients are assigned to 1 of 2 regimens. REGIMEN A: Patients receive fludarabine intravenously (IV) over 30 minutes on days -8 to -6, cyclophosphamide IV on days -7 to -6, and undergo total body irradiation (TBI) twice daily (BID) on days -4 to -1. Patients then undergo umbilical cord blood transplant on day 0. Between 4-24 hours after transplant completion, patients receive dilanubicel IV over 5-10 minutes in the absence of disease progression or unacceptable toxicity. REGIMEN B: Patients receive fludarabine IV over 30-60 minutes on days -6 to -2, cyclophosphamide IV on day -6, thiotepa IV over 4 hours on days -5 to -4, and undergo TBI once daily (QD) on days -2 to -1. Patients then undergo umbilical cord blood transplant on day 0. Between 4-24 hours after transplant completion, patients receive dilanubicel IV over 5-10 minutes in the absence of disease progression or unacceptable toxicity. After completion of study treatment, patients are followed up at 28, 80, and 180 days, and then at 1 and 2 years. ;
Status | Clinical Trial | Phase | |
---|---|---|---|
Recruiting |
NCT05400122 -
Natural Killer (NK) Cells in Combination With Interleukin-2 (IL-2) and Transforming Growth Factor Beta (TGFbeta) Receptor I Inhibitor Vactosertib in Cancer
|
Phase 1 | |
Recruiting |
NCT04460235 -
Immunogenicity of an Anti-pneumococcal Combined Vaccination in Acute Leukemia or Lymphoma
|
Phase 4 | |
Completed |
NCT04022785 -
PLX51107 and Azacitidine in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome
|
Phase 1 | |
Completed |
NCT03678493 -
A Study of FMT in Patients With AML Allo HSCT in Recipients
|
Phase 2 | |
Recruiting |
NCT05424562 -
A Study to Assess Change in Disease State in Adult Participants With Acute Myeloid Leukemia (AML) Ineligible for Intensive Chemotherapy Receiving Oral Venetoclax Tablets in Canada
|
||
Completed |
NCT03197714 -
Clinical Trial of OPB-111077 in Patients With Relapsed or Refractory Acute Myeloid Leukaemia
|
Phase 1 | |
Terminated |
NCT03224819 -
Study of Emerfetamab (AMG 673) in Adults With Relapsed/Refractory Acute Myeloid Leukemia (AML)
|
Early Phase 1 | |
Active, not recruiting |
NCT04070768 -
Study of the Safety and Efficacy of Gemtuzumab Ozogamicin (GO) and Venetoclax in Patients With Relapsed or Refractory CD33+ Acute Myeloid Leukemia:Big Ten Cancer Research Consortium BTCRC-AML17-113
|
Phase 1 | |
Active, not recruiting |
NCT03844048 -
An Extension Study of Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial
|
Phase 3 | |
Active, not recruiting |
NCT04107727 -
Trial to Compare Efficacy and Safety of Chemotherapy/Quizartinib vs Chemotherapy/Placebo in Adults FMS-like Tyrosine Kinase 3 (FLT3) Wild-type Acute Myeloid Leukemia (AML)
|
Phase 2 | |
Recruiting |
NCT04920500 -
Bioequivalence of Daunorubicin Cytarabine Liposomes in Naive AML Patients
|
N/A | |
Recruiting |
NCT04385290 -
Combination of Midostaurin and Gemtuzumab Ozogamicin in First-line Standard Therapy for Acute Myeloid Leukemia (MOSAIC)
|
Phase 1/Phase 2 | |
Recruiting |
NCT03897127 -
Study of Standard Intensive Chemotherapy Versus Intensive Chemotherapy With CPX-351 in Adult Patients With Newly Diagnosed AML and Intermediate- or Adverse Genetics
|
Phase 3 | |
Active, not recruiting |
NCT04021368 -
RVU120 in Patients With Acute Myeloid Leukemia or High-risk Myelodysplastic Syndrome
|
Phase 1 | |
Recruiting |
NCT03665480 -
The Effect of G-CSF on MRD After Induction Therapy in Newly Diagnosed AML
|
Phase 2/Phase 3 | |
Completed |
NCT02485535 -
Selinexor in Treating Patients With Intermediate- and High-Risk Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome After Transplant
|
Phase 1 | |
Enrolling by invitation |
NCT04093570 -
A Study for Participants Who Participated in Prior Clinical Studies of ASTX727 (Standard Dose), With a Food Effect Substudy at Select Study Centers
|
Phase 2 | |
Recruiting |
NCT04069208 -
IA14 Induction in Young Acute Myeloid Leukemia
|
Phase 2 | |
Recruiting |
NCT05744739 -
Tomivosertib in Relapsed or Refractory Acute Myeloid Leukemia (AML)
|
Phase 1 | |
Recruiting |
NCT04969601 -
Anti-Covid-19 Vaccine in Children With Acute Leukemia and Their Siblings
|
Phase 1/Phase 2 |