Barbeau H, Norman K, Fung J, Visintin M, Ladouceur M Does neurorehabilitation play a role in the recovery of walking in neurological populations? Ann N Y Acad Sci. 1998 Nov 16;860:377-92. doi: 10.1111/j.1749-6632.1998.tb09063.x.
Colombo G, Wirz M, Dietz V Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 2001 May;39(5):252-5. doi: 10.1038/sj.sc.3101154.
de Franca IS, Coura AS, de Franca EG, Basilio NN, Souto RQ [Quality of life of adults with spinal cord injury: a study using the WHOQOL-bref]. Rev Esc Enferm USP. 2011 Dec;45(6):1364-71. doi: 10.1590/s0080-62342011000600013. Portuguese.
Esquenazi A, Talaty M, Jayaraman A Powered Exoskeletons for Walking Assistance in Persons with Central Nervous System Injuries: A Narrative Review. PM R. 2017 Jan;9(1):46-62. doi: 10.1016/j.pmrj.2016.07.534. Epub 2016 Aug 24.
Esquenazi A, Talaty M, Packel A, Saulino M The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012 Nov;91(11):911-21. doi: 10.1097/PHM.0b013e318269d9a3.
Finlayson ML, Peterson EW Falls, aging, and disability. Phys Med Rehabil Clin N Am. 2010 May;21(2):357-73. doi: 10.1016/j.pmr.2009.12.003.
Fouad K, Tetzlaff W Rehabilitative training and plasticity following spinal cord injury. Exp Neurol. 2012 May;235(1):91-9. doi: 10.1016/j.expneurol.2011.02.009. Epub 2011 Feb 17.
Gorgey AS Robotic exoskeletons: The current pros and cons. World J Orthop. 2018 Sep 18;9(9):112-119. doi: 10.5312/wjo.v9.i9.112. eCollection 2018 Sep 18.
Hesse S, Uhlenbrock D A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000 Nov-Dec;37(6):701-8.
Hesse S Treadmill training with partial body weight support after stroke: a review. NeuroRehabilitation. 2008;23(1):55-65.
Laut J, Porfiri M, Raghavan P The Present and Future of Robotic Technology in Rehabilitation. Curr Phys Med Rehabil Rep. 2016 Dec;4(4):312-319. doi: 10.1007/s40141-016-0139-0. Epub 2016 Nov 19.
Leech KA, Kinnaird CR, Holleran CL, Kahn J, Hornby TG Effects of Locomotor Exercise Intensity on Gait Performance in Individuals With Incomplete Spinal Cord Injury. Phys Ther. 2016 Dec;96(12):1919-1929. doi: 10.2522/ptj.20150646. Epub 2016 Jun 16.
Li Y, Hollis ER 2nd The role of motor network reorganization during rehabilitation. Neural Regen Res. 2017 May;12(5):745-746. doi: 10.4103/1673-5374.206641. No abstract available.
van Hedel HJ; EMSCI Study Group Gait speed in relation to categories of functional ambulation after spinal cord injury. Neurorehabil Neural Repair. 2009 May;23(4):343-50. doi: 10.1177/1545968308324224. Epub 2008 Nov 25.
Wirz M, Muller R, Bastiaenen C Falls in persons with spinal cord injury: validity and reliability of the Berg Balance Scale. Neurorehabil Neural Repair. 2010 Jan;24(1):70-7. doi: 10.1177/1545968309341059. Epub 2009 Aug 12.
Wirz M, van Hedel HJA Balance, gait, and falls in spinal cord injury. Handb Clin Neurol. 2018;159:367-384. doi: 10.1016/B978-0-444-63916-5.00024-0.
Yang JF, Musselman KE, Livingstone D, Brunton K, Hendricks G, Hill D, Gorassini M Repetitive mass practice or focused precise practice for retraining walking after incomplete spinal cord injury? A pilot randomized clinical trial. Neurorehabil Neural Repair. 2014 May;28(4):314-24. doi: 10.1177/1545968313508473. Epub 2013 Nov 8.
First Report of a New Exoskeleton in Incomplete Spinal Cord Injury: FreeGait®
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.