Spinal Cord Injuries — Stimulation With Wire Leads to Restore Cough
Citation(s)
DiMarco AF, Geertman RT, Nemunaitis GA, Kowalski KE Comparison of disc and wire electrodes to restore cough via lower thoracic spinal cord stimulation. J Spinal Cord Med. 2022 May;45(3):354-363. doi: 10.1080/10790268.2021.1936388. Epub 2021 Jul 7.
DiMarco AF, Geertman RT, Tabbaa K, Kowalski KE Complete Restoration of Respiratory Muscle Function in Subjects With Spinal Cord Injury: Interventional Clinical Trial. Am J Phys Med Rehabil. 2020 Jul;99(7):e91-e92. doi: 10.1097/PHM.0000000000001338. No abstract available.
DiMarco AF, Geertman RT, Tabbaa K, Kowalski KE Complete Restoration of Respiratory Muscle Function in Three Subjects With Spinal Cord Injury: Pilot Interventional Clinical Trial. Am J Phys Med Rehabil. 2019 Jan;98(1):43-50. doi: 10.1097/PHM.0000000000001018.
DiMarco AF, Geertman RT, Tabbaa K, Nemunaitis GA and Kowalski KE Case Report: Effects of Lower Thoracic Spinal Cord Stimulation on Bowel Management in a Person with Spinal Cord Injury. Journal of Neurology and Neurobiology (2019) Volume 5 - Issue 1 | DOI: http://dx.doi.org/10.16966/2379-7150.156.
DiMarco AF, Geertman RT, Tabbaa K, Nemunaitis GA, Kowalski KE Effects of Lower Thoracic Spinal Cord Stimulation on Bowel Management in Individuals With Spinal Cord Injury. Arch Phys Med Rehabil. 2021 Jun;102(6):1155-1164. doi: 10.1016/j.apmr.2020.09.394. Epub 2020 Nov 5.
DiMarco AF, Geertman RT, Tabbaa K, Nemunaitis GA, Kowalski KE Restoration of cough via spinal cord stimulation improves pulmonary function in tetraplegics. J Spinal Cord Med. 2020 Sep;43(5):579-585. doi: 10.1080/10790268.2019.1699678. Epub 2019 Dec 6.
DiMarco AF, Geertman RT, Tabbaa K, Polito RR, Kowalski KE Case report: Minimally invasive method to activate the expiratory muscles to restore cough. J Spinal Cord Med. 2018 Sep;41(5):562-566. doi: 10.1080/10790268.2017.1357916. Epub 2017 Oct 11.
DiMarco AF, Geertman RT, Tabbaa K, Polito RR, Kowalski KE Economic Consequences of an Implanted Neuroprosthesis in Subjects with Spinal Cord Injury for Restoration of an Effective Cough. Top Spinal Cord Inj Rehabil. 2017 Summer;23(3):271-278. doi: 10.1310/sci2303-271.
DiMarco AF, Kowalski KE, Geertman RT, Hromyak DR, Frost FS, Creasey GH, Nemunaitis GA Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health-Sponsored clinical trial. Part II: clinical outcomes. Arch Phys Med Rehabil. 2009 May;90(5):726-32. doi: 10.1016/j.apmr.2008.11.014.
DiMarco AF, Kowalski KE, Geertman RT, Hromyak DR Lower thoracic spinal cord stimulation to restore cough in patients with spinal cord injury: results of a National Institutes of Health-sponsored clinical trial. Part I: methodology and effectiveness of expiratory muscle activation. Arch Phys Med Rehabil. 2009 May;90(5):717-25. doi: 10.1016/j.apmr.2008.11.013.
DiMarco AF, Kowalski KE, Geertman RT, Hromyak DR Spinal cord stimulation: a new method to produce an effective cough in patients with spinal cord injury. Am J Respir Crit Care Med. 2006 Jun 15;173(12):1386-9. doi: 10.1164/rccm.200601-097CR. Epub 2006 Mar 16.
DiMarco AF, Kowalski KE, Hromyak DR, Geertman RT Long-term follow-up of spinal cord stimulation to restore cough in subjects with spinal cord injury. J Spinal Cord Med. 2014 Jul;37(4):380-8. doi: 10.1179/2045772313Y.0000000152. Epub 2013 Nov 26.
DiMarco AF, Kowalski KE, Romaniuk JR Effects of diaphragm activation on airway pressure generation during lower thoracic spinal cord stimulation. Respir Physiol Neurobiol. 2007 Oct 15;159(1):102-7. doi: 10.1016/j.resp.2007.06.007. Epub 2007 Jun 22.
DiMarco AF, Kowalski KE Effects of chronic electrical stimulation on paralyzed expiratory muscles. J Appl Physiol (1985). 2008 Jun;104(6):1634-40. doi: 10.1152/japplphysiol.01321.2007. Epub 2008 Apr 10.
DiMarco AF, Romaniuk JR, Kowalski KE, Supinski G Mechanical contribution of expiratory muscles to pressure generation during spinal cord stimulation. J Appl Physiol (1985). 1999 Oct;87(4):1433-9. doi: 10.1152/jappl.1999.87.4.1433.
DiMarco AF, Romaniuk JR, Kowalski KE, Supinski G Pattern of expiratory muscle activation during lower thoracic spinal cord stimulation. J Appl Physiol (1985). 1999 Jun;86(6):1881-9. doi: 10.1152/jappl.1999.86.6.1881.
DiMarco AF, Romaniuk JR, Supinski GS Electrical activation of the expiratory muscles to restore cough. Am J Respir Crit Care Med. 1995 May;151(5):1466-71. doi: 10.1164/ajrccm.151.5.7735601.
Kowalski KE, DiMarco AF Comparison of wire and disc leads to activate the expiratory muscles in dogs. J Spinal Cord Med. 2011 Nov;34(6):600-8. doi: 10.1179/2045772311Y.0000000039.
Kowalski KE, Romaniuk JR, DiMarco AF Changes in expiratory muscle function following spinal cord section. J Appl Physiol (1985). 2007 Apr;102(4):1422-8. doi: 10.1152/japplphysiol.00870.2006. Epub 2006 Dec 7.
Romaniuk JR, Dick TE, Kowalski KE, Dimarco AF Effects of pulse lung inflation on chest wall expiratory motor activity. J Appl Physiol (1985). 2007 Jan;102(1):485-91. doi: 10.1152/japplphysiol.00130.2006. Epub 2006 Sep 7.
Wada JA, Osawa T, Mizoguchi T Recurrent spontaneous seizure state induced by prefrontal kindling in senegalese baboons, Papio papio. Can J Neurol Sci. 1975 Nov;2(4):477-92. doi: 10.1017/s031716710002062x.
Spinal Cord Stimulation With Wire Leads to Restore Cough
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.