Spinal Cord Injuries — Speed of Robotic Leg Movements and Orthostatic Hypotension in Subacute SCI
Citation(s)
Chao CY, Cheing GL The effects of lower-extremity functional electric stimulation on the orthostatic responses of people with tetraplegia. Arch Phys Med Rehabil. 2005 Jul;86(7):1427-33. doi: 10.1016/j.apmr.2004.12.033.
Claydon VE, Krassioukov AV Orthostatic hypotension and autonomic pathways after spinal cord injury. J Neurotrauma. 2006 Dec;23(12):1713-25. doi: 10.1089/neu.2006.23.1713.
Currie KD, Wong SC, Warburton DE, Krassioukov AV Reliability of the sit-up test in individuals with spinal cord injury. J Spinal Cord Med. 2015 Jul;38(4):563-6. doi: 10.1179/2045772315Y.0000000004. Epub 2015 Mar 4.
Elokda AS, Nielsen DH, Shields RK Effect of functional neuromuscular stimulation on postural related orthostatic stress in individuals with acute spinal cord injury. J Rehabil Res Dev. 2000 Sep-Oct;37(5):535-42.
Faghri PD, Yount J Electrically induced and voluntary activation of physiologic muscle pump: a comparison between spinal cord-injured and able-bodied individuals. Clin Rehabil. 2002 Dec;16(8):878-85. doi: 10.1191/0269215502cr570oa.
Faghri PD, Yount JP, Pesce WJ, Seetharama S, Votto JJ Circulatory hypokinesis and functional electric stimulation during standing in persons with spinal cord injury. Arch Phys Med Rehabil. 2001 Nov;82(11):1587-95. doi: 10.1053/apmr.2001.25984.
Gillis DJ, Wouda M, Hjeltnes N Non-pharmacological management of orthostatic hypotension after spinal cord injury: a critical review of the literature. Spinal Cord. 2008 Oct;46(10):652-9. doi: 10.1038/sc.2008.48. Epub 2008 Jun 10.
Hamzaid NA, Tean LT, Davis GM, Suhaimi A, Hasnan N Electrical stimulation-evoked contractions blunt orthostatic hypotension in sub-acute spinal cord-injured individuals: two clinical case studies. Spinal Cord. 2015 May;53(5):375-9. doi: 10.1038/sc.2014.187. Epub 2014 Nov 4.
Illman A, Stiller K, Williams M The prevalence of orthostatic hypotension during physiotherapy treatment in patients with an acute spinal cord injury. Spinal Cord. 2000 Dec;38(12):741-7. doi: 10.1038/sj.sc.3101089.
Ravensbergen HJ, de Groot S, Post MW, Slootman HJ, van der Woude LH, Claydon VE Cardiovascular function after spinal cord injury: prevalence and progression of dysfunction during inpatient rehabilitation and 5 years following discharge. Neurorehabil Neural Repair. 2014 Mar-Apr;28(3):219-29. doi: 10.1177/1545968313504542. Epub 2013 Nov 15.
Sahota IS, Ravensbergen HR, McGrath MS, Claydon VE Cerebrovascular responses to orthostatic stress after spinal cord injury. J Neurotrauma. 2012 Oct 10;29(15):2446-56. doi: 10.1089/neu.2012.2379. Epub 2012 Sep 20.
Sampson EE, Burnham RS, Andrews BJ Functional electrical stimulation effect on orthostatic hypotension after spinal cord injury. Arch Phys Med Rehabil. 2000 Feb;81(2):139-43. doi: 10.1016/s0003-9993(00)90131-x.
Sarabadani Tafreshi A, Riener R, Klamroth-Marganska V Distinctive Steady-State Heart Rate and Blood Pressure Responses to Passive Robotic Leg Exercise and Functional Electrical Stimulation during Head-Up Tilt. Front Physiol. 2016 Dec 9;7:612. doi: 10.3389/fphys.2016.00612. eCollection 2016.
Yoshida T, Masani K, Sayenko DG, Miyatani M, Fisher JA, Popovic MR Cardiovascular response of individuals with spinal cord injury to dynamic functional electrical stimulation under orthostatic stress. IEEE Trans Neural Syst Rehabil Eng. 2013 Jan;21(1):37-46. doi: 10.1109/TNSRE.2012.2211894. Epub 2012 Aug 9.
Does the Speed of Robotic Leg Movements During Tilt-table Verticalization Affect Orthostatic Hypotension in Persons With Subacute SCI
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.