Spinal Cord Injuries — Long Duration Activity and Metabolic Control After Spinal Cord Injury
Citation(s)
Adams CM, Suneja M, Dudley-Javoroski S, Shields RK Altered mRNA expression after long-term soleus electrical stimulation training in humans with paralysis. Muscle Nerve. 2011 Jan;43(1):65-75. doi: 10.1002/mus.21831.
Cole KR, Dudley-Javoroski S, Shields RK Hybrid stimulation enhances torque as a function of muscle fusion in human paralyzed and non-paralyzed skeletal muscle. J Spinal Cord Med. 2019 Sep;42(5):562-570. doi: 10.1080/10790268.2018.1485312. Epub 2018 Jun 20.
Dudley-Javoroski S, Lee J, Shields RK Cognitive function, quality of life, and aging: relationships in individuals with and without spinal cord injury. Physiother Theory Pract. 2022 Jan;38(1):36-45. doi: 10.1080/09593985.2020.1712755. Epub 2020 Jan 8.
Dudley-Javoroski S, Shields RK Active-resisted stance modulates regional bone mineral density in humans with spinal cord injury. J Spinal Cord Med. 2013 May;36(3):191-9. doi: 10.1179/2045772313Y.0000000092.
Dudley-Javoroski S, Shields RK Assessment of physical function and secondary complications after complete spinal cord injury. Disabil Rehabil. 2006 Jan 30;28(2):103-10. doi: 10.1080/09638280500163828.
Dudley-Javoroski S, Shields RK Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury. Phys Ther. 2008 Mar;88(3):387-96. doi: 10.2522/ptj.20070224. Epub 2008 Jan 17.
Frey Law LA, Shields RK Femoral loads during passive, active, and active-resistive stance after spinal cord injury: a mathematical model. Clin Biomech (Bristol, Avon). 2004 Mar;19(3):313-21. doi: 10.1016/j.clinbiomech.2003.12.005.
Lee J, Dudley-Javoroski S, Shields RK Motor demands of cognitive testing may artificially reduce executive function scores in individuals with spinal cord injury. J Spinal Cord Med. 2021 Mar;44(2):253-261. doi: 10.1080/10790268.2019.1597482. Epub 2019 Apr 3.
McHenry CL, Shields RK A biomechanical analysis of exercise in standing, supine, and seated positions: Implications for individuals with spinal cord injury. J Spinal Cord Med. 2012 May;35(3):140-7. doi: 10.1179/2045772312Y.0000000011.
McHenry CL, Wu J, Shields RK Potential regenerative rehabilitation technology: implications of mechanical stimuli to tissue health. BMC Res Notes. 2014 Jun 3;7:334. doi: 10.1186/1756-0500-7-334.
Oza PD, Dudley-Javoroski S, Shields RK Modulation of H-Reflex Depression with Paired-Pulse Stimulation in Healthy Active Humans. Rehabil Res Pract. 2017;2017:5107097. doi: 10.1155/2017/5107097. Epub 2017 Oct 31.
Petrie M, Suneja M, Shields RK Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle. J Appl Physiol (1985). 2015 Mar 15;118(6):723-31. doi: 10.1152/japplphysiol.00628.2014. Epub 2015 Jan 29.
Petrie MA, Sharma A, Taylor EB, Suneja M, Shields RK Impact of short- and long-term electrically induced muscle exercise on gene signaling pathways, gene expression, and PGC1a methylation in men with spinal cord injury. Physiol Genomics. 2020 Feb 1;52(2):71-80. doi: 10.1152/physiolgenomics.00064.2019. Epub 2019 Dec 23.
Petrie MA, Suneja M, Faidley E, Shields RK A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury. PLoS One. 2014 Dec 22;9(12):e115791. doi: 10.1371/journal.pone.0115791. eCollection 2014.
Petrie MA, Suneja M, Faidley E, Shields RK Low force contractions induce fatigue consistent with muscle mRNA expression in people with spinal cord injury. Physiol Rep. 2014 Feb 25;2(2):e00248. doi: 10.1002/phy2.248. eCollection 2014 Feb 1.
Petrie MA, Taylor EB, Suneja M, Shields RK Genomic and Epigenomic Evaluation of Electrically Induced Exercise in People With Spinal Cord Injury: Application to Precision Rehabilitation. Phys Ther. 2022 Jan 1;102(1):pzab243. doi: 10.1093/ptj/pzab243.
Shields RK, Dudley-Javoroski S Epigenetics and the International Classification of Functioning, Disability and Health Model: Bridging Nature, Nurture, and Patient-Centered Population Health. Phys Ther. 2022 Jan 1;102(1):pzab247. doi: 10.1093/ptj/pzab247.
Shields RK, Dudley-Javoroski S Monitoring standing wheelchair use after spinal cord injury: a case report. Disabil Rehabil. 2005 Feb 4;27(3):142-6. doi: 10.1080/09638280400009337.
Shields RK Precision Rehabilitation: How Lifelong Healthy Behaviors Modulate Biology, Determine Health, and Affect Populations. Phys Ther. 2022 Jan 1;102(1):pzab248. doi: 10.1093/ptj/pzab248. No abstract available.
Shields RK Turning Over the Hourglass. Phys Ther. 2017 Oct 1;97(10):949-963. doi: 10.1093/ptj/pzx072.
Woelfel JR, Dudley-Javoroski S, Shields RK Precision Physical Therapy: Exercise, the Epigenome, and the Heritability of Environmentally Modified Traits. Phys Ther. 2018 Nov 1;98(11):946-952. doi: 10.1093/ptj/pzy092.
Woelfel JR, Kimball AL, Yen CL, Shields RK Low-Force Muscle Activity Regulates Energy Expenditure after Spinal Cord Injury. Med Sci Sports Exerc. 2017 May;49(5):870-878. doi: 10.1249/MSS.0000000000001187.
Yen CL, McHenry CL, Petrie MA, Dudley-Javoroski S, Shields RK Vibration training after chronic spinal cord injury: Evidence for persistent segmental plasticity. Neurosci Lett. 2017 Apr 24;647:129-132. doi: 10.1016/j.neulet.2017.03.019. Epub 2017 Mar 16.
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.