Bodenreider O The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D267-70. doi: 10.1093/nar/gkh061.
Brewer A, Helfgott MA, Novak J, Schanhals R An application of cmaps in the description of clinical information structure and logic in electronic health records. Glob Adv Health Med. 2012 Sep;1(4):16-31. doi: 10.7453/gahmj.2012.1.4.003.
Bujang MA, Adnan TH Requirements for Minimum Sample Size for Sensitivity and Specificity Analysis. J Clin Diagn Res. 2016 Oct;10(10):YE01-YE06. doi: 10.7860/JCDR/2016/18129.8744. Epub 2016 Oct 1.
C D. Sutton, "Classification and Regression Trees, Bagging, and Boosting," Handb. Stat., vol. 24, pp. 303-329, 2005, doi: 10.1016/S0169-7161(04)24011-1.
Hajian-Tilaki K Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform. 2014 Apr;48:193-204. doi: 10.1016/j.jbi.2014.02.013. Epub 2014 Feb 26.
Iwashyna TJ, Odden A, Rohde J, Bonham C, Kuhn L, Malani P, Chen L, Flanders S Identifying patients with severe sepsis using administrative claims: patient-level validation of the angus implementation of the international consensus conference definition of severe sepsis. Med Care. 2014 Jun;52(6):e39-43. doi: 10.1097/MLR.0b013e318268ac86.
Jacobs L, Berrens Z, Stenson EK, Zackoff MW, Danziger LA, Lahni P, Wong HR The Pediatric Sepsis Biomarker Risk Model (PERSEVERE) Biomarkers Predict Clinical Deterioration and Mortality in Immunocompromised Children Evaluated for Infection. Sci Rep. 2019 Jan 23;9(1):424. doi: 10.1038/s41598-018-36743-z.
Kent P, Jensen RK, Kongsted A A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep Cluster analysis, Latent Gold and SNOB. BMC Med Res Methodol. 2014 Oct 2;14:113. doi: 10.1186/1471-2288-14-113.
L Medsker, M. Tan, and E. Turban, "Knowledge acquisition from multiple experts: Problems and issues," Expert Syst. Appl., vol. 9, no. 1, pp. 35-40, Jan. 1995, doi: 10.1016/0957-4174(94)00046-X.
Lippi G Sepsis biomarkers: past, present and future. Clin Chem Lab Med. 2019 Aug 27;57(9):1281-1283. doi: 10.1515/cclm-2018-1347. No abstract available.
Patel K, McElvania E Diagnostic Challenges and Laboratory Considerations for Pediatric Sepsis. J Appl Lab Med. 2019 Jan;3(4):587-600. doi: 10.1373/jalm.2017.025908. Epub 2018 Nov 21.
Paxton C, Niculescu-Mizil A, Saria S Developing predictive models using electronic medical records: challenges and pitfalls. AMIA Annu Symp Proc. 2013 Nov 16;2013:1109-15. eCollection 2013.
R Lachman, "Expert systems: A cognitive science perspective," Behav. Res. Methods, Instruments, Comput., 1989, doi: 10.3758/BF03205582.
R M. RJ Rovetto, "Causality and the ontology of disease," Appl Ontol, vol. 10, no. 2, pp. 79-105, Sep. 2015, doi: 10.3233/ao-150147.
R Matkar and A. Parab, "Ontology based expert systems - replication of human learning," Thinkquest~2010, pp. 43-47, 2011, doi: 10.1007/978-81-8489-989-4_7.
R R. Starr and J. M. Parente De Oliveira, "Concept maps as the first step in an ontology construction method," Inf. Syst., 2013, doi: 10.1016/j.is.2012.05.010.
Rudin C Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead. Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
Sinha P, Calfee CS, Delucchi KL Practitioner's Guide to Latent Class Analysis: Methodological Considerations and Common Pitfalls. Crit Care Med. 2021 Jan 1;49(1):e63-e79. doi: 10.1097/CCM.0000000000004710.
Yamagata Y, Kozaki K, Imai T, Ohe K, Mizoguchi R An ontological modeling approach for abnormal states and its application in the medical domain. J Biomed Semantics. 2014 May 21;5:23. doi: 10.1186/2041-1480-5-23. eCollection 2014.
Biomarker-enhanced Artificial Intelligence Based Pediatric Sepsis Screening Tool Towards Early Recognition and Personalized Therapeutics
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.