Badhe SP, Lawrence TM, Smith FD, Lunn PG An assessment of porcine dermal xenograft as an augmentation graft in the treatment of extensive rotator cuff tears. J Shoulder Elbow Surg. 2008 Jan-Feb;17(1 Suppl):35S-39S. doi: 10.1016/j.jse.2007.08.005.
Badylak SF, Freytes DO, Gilbert TW Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2009 Jan;5(1):1-13. doi: 10.1016/j.actbio.2008.09.013. Epub 2008 Oct 2.
Bond JL, Dopirak RM, Higgins J, Burns J, Snyder SJ Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: technique and preliminary results. Arthroscopy. 2008 Apr;24(4):403-409.e1. doi: 10.1016/j.arthro.2007.07.033.
Chung SW, Kim JY, Kim MH, Kim SH, Oh JH Arthroscopic repair of massive rotator cuff tears: outcome and analysis of factors associated with healing failure or poor postoperative function. Am J Sports Med. 2013 Jul;41(7):1674-83. doi: 10.1177/0363546513485719. Epub 2013 Apr 30.
Derwin KA, Badylak SF, Steinmann SP, Iannotti JP Extracellular matrix scaffold devices for rotator cuff repair. J Shoulder Elbow Surg. 2010 Apr;19(3):467-76. doi: 10.1016/j.jse.2009.10.020. Epub 2010 Feb 26.
Greenspoon JA, Petri M, Warth RJ, Millett PJ Massive rotator cuff tears: pathomechanics, current treatment options, and clinical outcomes. J Shoulder Elbow Surg. 2015 Sep;24(9):1493-505. doi: 10.1016/j.jse.2015.04.005. Epub 2015 Jun 28.
Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ Porcine small intestine submucosa augmentation of surgical repair of chronic two-tendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006 Jun;88(6):1238-44. doi: 10.2106/JBJS.E.00524.
Parnes N, Bartoszewski NR, Defranco MJ Arthroscopic Repair of Full-Thickness Rotator Cuff Tears in Active Patients Younger Than 40 Years: 2- to 5-Year Clinical Outcomes. Orthopedics. 2018 Jan 1;41(1):e52-e57. doi: 10.3928/01477447-20171114-02. Epub 2017 Nov 21.
Schlegel TF, Hawkins RJ, Lewis CW, Motta T, Turner AS The effects of augmentation with Swine small intestine submucosa on tendon healing under tension: histologic and mechanical evaluations in sheep. Am J Sports Med. 2006 Feb;34(2):275-80. doi: 10.1177/0363546505279912. Epub 2005 Oct 6.
Sclamberg SG, Tibone JE, Itamura JM, Kasraeian S Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J Shoulder Elbow Surg. 2004 Sep-Oct;13(5):538-41. doi: 10.1016/j.jse.2004.03.005.
Soler JA, Gidwani S, Curtis MJ Early complications from the use of porcine dermal collagen implants (Permacol) as bridging constructs in the repair of massive rotator cuff tears. A report of 4 cases. Acta Orthop Belg. 2007 Aug;73(4):432-6.
Zheng MH, Chen J, Kirilak Y, Willers C, Xu J, Wood D Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater. 2005 Apr;73(1):61-7. doi: 10.1002/jbm.b.30170.
Extracellular Matrix Scaffold Graft Augmentation in Rotator Cuff Repair: a Prospective, Randomized, Controlled Trial
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.