Aldahan AS, Chen LL, Tsatalis JP, Grichnik JM Optical Coherence Tomography Visualization of a Port-Wine Stain in a Patient With Sturge-Weber Syndrome. Dermatol Surg. 2017 Jun;43(6):889-891. doi: 10.1097/DSS.0000000000001055. No abstract available.
Olesen UH, Mogensen M, Haedersdal M Vehicle type affects filling of fractional laser-ablated channels imaged by optical coherence tomography. Lasers Med Sci. 2017 Apr;32(3):679-684. doi: 10.1007/s10103-017-2168-z. Epub 2017 Feb 17.
Ring HC, Mogensen M, Banzhaf C, Themstrup L, Jemec GB Optical coherence tomography imaging of telangiectasias during intense pulsed light treatment: a potential tool for rapid outcome assessment. Arch Dermatol Res. 2013 May;305(4):299-303. doi: 10.1007/s
Urban J, Siripunvarapon AH, Meekings A, Kalowitz A, Markowitz O Optical coherence tomography imaging of erythematotelangiectatic rosacea during treatment with brimonidine topical gel 0.33%: a potential method for treatment outcome assessment. J Drugs Der
Waibel JS, Holmes J, Rudnick A, Woods D, Kelly KM Angiographic optical coherence tomography imaging of hemangiomas and port wine birthmarks. Lasers Surg Med. 2018 Mar 22. doi: 10.1002/lsm.22816. Online ahead of print.
Waibel JS, Rudnick AC, Wulkan AJ, Holmes JD The Diagnostic Role of Optical Coherence Tomography (OCT) in Measuring the Depth of Burn and Traumatic Scars for More Accurate Laser Dosimetry: Pilot Study. J Drugs Dermatol. 2016 Nov 1;15(11):1375-1380.
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.