Prostate Cancer — Deep Learning Super Resolution Reconstruction for Fast and Motion Robust T2-weighted Prostate MRI
Citation(s)
11 Li Y, Sixou B, Peyrin F. A Review of the Deep Learning Methods for Medical Images Super Resolution Problems. IRBM, Volume 42, Issue 2, April 2021, Pages 120-133. doi: 10.1016/j.irbm.2020.08.004
Dong C, Loy CC, He K, Tang X Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
Suzuki S, Machida H, Tanaka I, Ueno E Measurement of vascular wall attenuation: comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro. Eur J Radiol. 2012 Nov;81(11):3348-53. doi: 10.1016/j.ejrad.2012.02.009. Epub 2012 Mar 19.
Zaitsev M, Maclaren J, Herbst M Motion artifacts in MRI: A complex problem with many partial solutions. J Magn Reson Imaging. 2015 Oct;42(4):887-901. doi: 10.1002/jmri.24850. Epub 2015 Jan 28.
Zhang J and Ghanem B ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 1828-1837
Deep Learning Super Resolution Reconstruction for Fast and Motion Robust T2-weighted Prostate MRI
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.