Elkord E Helios Should Not Be Cited as a Marker of Human Thymus-Derived Tregs. Commentary: Helios(+) and Helios(-) Cells Coexist within the Natural FOXP3(+) T Regulatory Cell Subset in Humans. Front Immunol. 2016 Jul 8;7:276. doi: 10.3389/fimmu.2016.00276. eCollection 2016. No abstract available.
Faul F, Erdfelder E, Lang AG, Buchner A G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007 May;39(2):175-91. doi: 10.3758/bf03193146.
Green ES, Arck PC Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. Semin Immunopathol. 2020 Aug;42(4):413-429. doi: 10.1007/s00281-020-00807-y. Epub 2020 Sep 7.
Jabrane-Ferrat N Features of Human Decidual NK Cells in Healthy Pregnancy and During Viral Infection. Front Immunol. 2019 Jun 28;10:1397. doi: 10.3389/fimmu.2019.01397. eCollection 2019.
Kratochvil M, Koladiya A, Vondrasek J Generalized EmbedSOM on quadtree-structured self-organizing maps. F1000Res. 2019 Dec 18;8:2120. doi: 10.12688/f1000research.21642.2. eCollection 2019.
Krop J, Heidt S, Claas FHJ, Eikmans M Regulatory T Cells in Pregnancy: It Is Not All About FoxP3. Front Immunol. 2020 Jun 23;11:1182. doi: 10.3389/fimmu.2020.01182. eCollection 2020.
Manuck TA Racial and ethnic differences in preterm birth: A complex, multifactorial problem. Semin Perinatol. 2017 Dec;41(8):511-518. doi: 10.1053/j.semperi.2017.08.010. Epub 2017 Sep 21.
Nakashima A, Ito M, Shima T, Bac ND, Hidaka T, Saito S Accumulation of IL-17-positive cells in decidua of inevitable abortion cases. Am J Reprod Immunol. 2010 Jul 1;64(1):4-11. doi: 10.1111/j.1600-0897.2010.00812.x. Epub 2010 Mar 4.
Perin J, Mulick A, Yeung D, Villavicencio F, Lopez G, Strong KL, Prieto-Merino D, Cousens S, Black RE, Liu L Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc Health. 2022 Feb;6(2):106-115. doi: 10.1016/S2352-4642(21)00311-4. Epub 2021 Nov 17. Erratum In: Lancet Child Adolesc Health. 2022 Jan;6(1):e4.
Ream MA, Lehwald L Neurologic Consequences of Preterm Birth. Curr Neurol Neurosci Rep. 2018 Jun 16;18(8):48. doi: 10.1007/s11910-018-0862-2.
Robertson SA, Care AS, Moldenhauer LM Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest. 2018 Oct 1;128(10):4224-4235. doi: 10.1172/JCI122182. Epub 2018 Oct 1.
Rowe JH, Ertelt JM, Xin L, Way SS Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 2012 Oct 4;490(7418):102-6. doi: 10.1038/nature11462. Epub 2012 Sep 26.
Rudensky AY Regulatory T cells and Foxp3. Immunol Rev. 2011 May;241(1):260-8. doi: 10.1111/j.1600-065X.2011.01018.x.
Schober L, Radnai D, Schmitt E, Mahnke K, Sohn C, Steinborn A Term and preterm labor: decreased suppressive activity and changes in composition of the regulatory T-cell pool. Immunol Cell Biol. 2012 Nov;90(10):935-44. doi: 10.1038/icb.2012.33. Epub 2012 Jul 3.
Shevyrev D, Tereshchenko V Treg Heterogeneity, Function, and Homeostasis. Front Immunol. 2020 Jan 14;10:3100. doi: 10.3389/fimmu.2019.03100. eCollection 2019.
Tsuda S, Nakashima A, Shima T, Saito S New Paradigm in the Role of Regulatory T Cells During Pregnancy. Front Immunol. 2019 Mar 26;10:573. doi: 10.3389/fimmu.2019.00573. eCollection 2019.
Vanikova S, Koladiya A, Musil J OMIP-080: 29-Color flow cytometry panel for comprehensive evaluation of NK and T cells reconstitution after hematopoietic stem cells transplantation. Cytometry A. 2022 Jan;101(1):21-26. doi: 10.1002/cyto.a.24510. Epub 2021 Oct 24.
Wang S, Zhu X, Xu Y, Zhang D, Li Y, Tao Y, Piao H, Li D, Du M Programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) regulate CD4+ T cells to induce Type 2 helper T cell (Th2) bias at the maternal-fetal interface. Hum Reprod. 2016 Apr;31(4):700-11. doi: 10.1093/humrep/dew019. Epub 2016 Feb 16.
Wang W, Sung N, Gilman-Sachs A, Kwak-Kim J T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front Immunol. 2020 Aug 18;11:2025. doi: 10.3389/fimmu.2020.02025. eCollection 2020.
Wang WJ, Hao CF, Yi-Lin, Yin GJ, Bao SH, Qiu LH, Lin QD Increased prevalence of T helper 17 (Th17) cells in peripheral blood and decidua in unexplained recurrent spontaneous abortion patients. J Reprod Immunol. 2010 Mar;84(2):164-70. doi: 10.1016/j.jri.2009.12.003. Epub 2010 Jan 27.
Xue L, Gyles SL, Wettey FR, Gazi L, Townsend E, Hunter MG, Pettipher R Prostaglandin D2 causes preferential induction of proinflammatory Th2 cytokine production through an action on chemoattractant receptor-like molecule expressed on Th2 cells. J Immunol. 2005 Nov 15;175(10):6531-6. doi: 10.4049/jimmunol.175.10.6531.
Yadav M, Stephan S, Bluestone JA Peripherally induced tregs - role in immune homeostasis and autoimmunity. Front Immunol. 2013 Aug 7;4:232. doi: 10.3389/fimmu.2013.00232. eCollection 2013.
Yu WQ, Ji NF, Gu CJ, Wang YL, Huang M, Zhang MS Coexpression of Helios in Foxp3+ Regulatory T Cells and Its Role in Human Disease. Dis Markers. 2021 Jun 22;2021:5574472. doi: 10.1155/2021/5574472. eCollection 2021.
Zhao H, Bo C, Kang Y, Li H What Else Can CD39 Tell Us? Front Immunol. 2017 Jun 22;8:727. doi: 10.3389/fimmu.2017.00727. eCollection 2017.
The Role of Selected Immunological Indicators and Microbiota in Patients Experiencing Premature Birth and Preeclampsia
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.