Pressure Injury — Decreasing Intraoperative Skin Damage in Prone Position Surgeries
Citation(s)
1 European Pressure Ulcer Advisory Panel, National Pressure Injury Advisory Panel and Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers/Injuries: Clinical Practice Guideline. The International Guideline. Emily Haesler (Ed.). EPUAP/NPIAP/PPPIA: 2019.
Alanen E, Nuutinen J, Nicklen K, Lahtinen T, Monkkonen J Measurement of hydration in the stratum corneum with the MoistureMeter and comparison with the Corneometer. Skin Res Technol. 2004 Feb;10(1):32-7. doi: 10.1111/j.1600-0846.2004.00050.x.
Bates-Jensen BM, McCreath HE, Harputlu D, Patlan A Reliability of the Bates-Jensen wound assessment tool for pressure injury assessment: The pressure ulcer detection study. Wound Repair Regen. 2019 Jul;27(4):386-395. doi: 10.1111/wrr.12714. Epub 2019 Mar 18.
Bates-Jensen BM, McCreath HE, Kono A, Apeles NC, Alessi C Subepidermal moisture predicts erythema and stage 1 pressure ulcers in nursing home residents: a pilot study. J Am Geriatr Soc. 2007 Aug;55(8):1199-205. doi: 10.1111/j.1532-5415.2007.01261.x.
Bates-Jensen BM, McCreath HE, Nakagami G, Patlan A Subepidermal moisture detection of heel pressure injury: The pressure ulcer detection study outcomes. Int Wound J. 2018 Apr;15(2):297-309. doi: 10.1111/iwj.12869. Epub 2017 Dec 17.
Bates-Jensen BM, McCreath HE, Patlan A Subepidermal moisture detection of pressure induced tissue damage on the trunk: The pressure ulcer detection study outcomes. Wound Repair Regen. 2017 May;25(3):502-511. doi: 10.1111/wrr.12548. Epub 2017 May 31.
Bates-Jensen BM, McCreath HE, Pongquan V, Apeles NC Subepidermal moisture differentiates erythema and stage I pressure ulcers in nursing home residents. Wound Repair Regen. 2008 Mar-Apr;16(2):189-97. doi: 10.1111/j.1524-475X.2008.00359.x.
Bates-Jensen BM, McCreath HE, Pongquan V Subepidermal moisture is associated with early pressure ulcer damage in nursing home residents with dark skin tones: pilot findings. J Wound Ostomy Continence Nurs. 2009 May-Jun;36(3):277-84. doi: 10.1097/WON.0b013e3181a19e53.
Bulfone G, Bressan V, Morandini A, Stevanin S Perioperative Pressure Injuries: A Systematic Literature Review. Adv Skin Wound Care. 2018 Dec;31(12):556-564. doi: 10.1097/01.ASW.0000544613.10878.ed.
Bulfone G, Marzoli I, Quattrin R, Fabbro C, Palese A A longitudinal study of the incidence of pressure sores and the associated risks and strategies adopted in Italian operating theatres. J Perioper Pract. 2012 Feb;22(2):50-6. doi: 10.1177/175045891202200202. Erratum In: J Perioper Pract. 2012 Apr;22(4):111.
Clendenin M, Jaradeh K, Shamirian A, Rhodes SL Inter-operator and inter-device agreement and reliability of the SEM Scanner. J Tissue Viability. 2015 Feb;24(1):17-23. doi: 10.1016/j.jtv.2015.01.003. Epub 2015 Feb 3.
Gao L, Yang L, Li X, Chen J, Du J, Bai X, Yang X The use of a logistic regression model to develop a risk assessment of intraoperatively acquired pressure ulcer. J Clin Nurs. 2018 Aug;27(15-16):2984-2992. doi: 10.1111/jocn.14491. Epub 2018 Jun 5.
Gefen A, Creehan S, Black J Critical biomechanical and clinical insights concerning tissue protection when positioning patients in the operating room: A scoping review. Int Wound J. 2020 Oct;17(5):1405-1423. doi: 10.1111/iwj.13408. Epub 2020 Jun 4.
Gefen A, Gershon S An Observational, Prospective Cohort Pilot Study to Compare the Use of Subepidermal Moisture Measurements Versus Ultrasound and Visual Skin Assessments for Early Detection of Pressure Injury. Ostomy Wound Manage. 2018 Sep;64(9):12-27.
Guihan M, Bates-Jenson BM, Chun S, Parachuri R, Chin AS, McCreath H Assessing the feasibility of subepidermal moisture to predict erythema and stage 1 pressure ulcers in persons with spinal cord injury: a pilot study. J Spinal Cord Med. 2012 Jan;35(1):46-52. doi: 10.1179/204577211X13209212104141.
Joseph J, McLaughlin D, Darian V, Hayes L, Siddiqui A Alternating Pressure Overlay for Prevention of Intraoperative Pressure Injury. J Wound Ostomy Continence Nurs. 2019 Jan/Feb;46(1):13-17. doi: 10.1097/WON.0000000000000497.
Luo M, Long XH, Wu JL, Huang SZ, Zeng Y Incidence and Risk Factors of Pressure Injuries in Surgical Spinal Patients: A Retrospective Study. J Wound Ostomy Continence Nurs. 2019 Sep/Oct;46(5):397-400. doi: 10.1097/WON.0000000000000570.
Nuutinen J, Ikaheimo R, Lahtinen T Validation of a new dielectric device to assess changes of tissue water in skin and subcutaneous fat. Physiol Meas. 2004 Apr;25(2):447-54. doi: 10.1088/0967-3334/25/2/004.
O'Brien G, Moore Z, Patton D, O'Connor T The relationship between nurses assessment of early pressure ulcer damage and sub epidermal moisture measurement: A prospective explorative study. J Tissue Viability. 2018 Nov;27(4):232-237. doi: 10.1016/j.jtv.2018.06.004. Epub 2018 Jun 25.
Palenske J, Morhenn VB Changes in the skin's capacitance after damage to the stratum corneum in humans. J Cutan Med Surg. 1999 Jan;3(3):127-31. doi: 10.1177/120347549900300304.
Peko L, Barakat-Johnson M, Gefen A Protecting prone positioned patients from facial pressure ulcers using prophylactic dressings: A timely biomechanical analysis in the context of the COVID-19 pandemic. Int Wound J. 2020 Dec;17(6):1595-1606. doi: 10.1111/iwj.13435. Epub 2020 Jul 3.
Riemenschneider KJ Prevention of Pressure Injuries in the Operating Room: A Quality Improvement Project. J Wound Ostomy Continence Nurs. 2018 Mar/Apr;45(2):141-145. doi: 10.1097/WON.0000000000000410.
Schoonhoven L, Defloor T, Grypdonck MH Incidence of pressure ulcers due to surgery. J Clin Nurs. 2002 Jul;11(4):479-87. doi: 10.1046/j.1365-2702.2002.00621.x.
Smith G Improved clinical outcomes in pressure ulcer prevention using the SEM scanner. J Wound Care. 2019 May 2;28(5):278-282. doi: 10.12968/jowc.2019.28.5.278.
Spector WD, Limcangco R, Owens PL, Steiner CA Marginal Hospital Cost of Surgery-related Hospital-acquired Pressure Ulcers. Med Care. 2016 Sep;54(9):845-51. doi: 10.1097/MLR.0000000000000558.
Strauss R, Preston A, Zalman DC, Rao AD Silicone Foam Dressing for Prevention of Sacral Deep Tissue Injuries Among Cardiac Surgery Patients. Adv Skin Wound Care. 2019 Mar;32(3):139-142. doi: 10.1097/01.ASW.0000553111.55505.84.
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.