Garry PS, Ezra M, Rowland MJ, Westbrook J, Pattinson KT The role of the nitric oxide pathway in brain injury and its treatment--from bench to bedside. Exp Neurol. 2015 Jan;263:235-43. doi: 10.1016/j.expneurol.2014.10.017. Epub 2014 Oct 29.
Hino A, Tokuyama Y, Weir B, Takeda J, Yano H, Bell GI, Macdonald RL Changes in endothelial nitric oxide synthase mRNA during vasospasm after subarachnoid hemorrhage in monkeys. Neurosurgery. 1996 Sep;39(3):562-7; discussion 567-8. doi: 10.1097/00006123-199609000-00026.
Macdonald RL Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014 Jan;10(1):44-58. doi: 10.1038/nrneurol.2013.246. Epub 2013 Dec 10.
Macmillan CS, Andrews PJ Cerebrovenous oxygen saturation monitoring: practical considerations and clinical relevance. Intensive Care Med. 2000 Aug;26(8):1028-36. doi: 10.1007/s001340051315.
Pacher P, Beckman JS, Liaudet L Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007 Jan;87(1):315-424. doi: 10.1152/physrev.00029.2006.
Pluta RM Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther. 2005 Jan;105(1):23-56. doi: 10.1016/j.pharmthera.2004.10.002.
Pluta RM Dysfunction of nitric oxide synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl. 2008;104:139-47. doi: 10.1007/978-3-211-75718-5_28.
Sehba FA, Bederson JB Nitric oxide in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110(Pt 1):99-103. doi: 10.1007/978-3-7091-0353-1_18.
Sehba FA, Chereshnev I, Maayani S, Friedrich V Jr, Bederson JB Nitric oxide synthase in acute alteration of nitric oxide levels after subarachnoid hemorrhage. Neurosurgery. 2004 Sep;55(3):671-7; discussion 677-8. doi: 10.1227/01.neu.0000134557.82423.b2.
Sehba FA, Schwartz AY, Chereshnev I, Bederson JB Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2000 Mar;20(3):604-11. doi: 10.1097/00004647-200003000-00018.
Sobey CG, Faraci FM Subarachnoid haemorrhage: what happens to the cerebral arteries? Clin Exp Pharmacol Physiol. 1998 Nov;25(11):867-76. doi: 10.1111/j.1440-1681.1998.tb02337.x.
Suarez JI, Tarr RW, Selman WR Aneurysmal subarachnoid hemorrhage. N Engl J Med. 2006 Jan 26;354(4):387-96. doi: 10.1056/NEJMra052732. No abstract available.
van Gijn J, Kerr RS, Rinkel GJ Subarachnoid haemorrhage. Lancet. 2007 Jan 27;369(9558):306-18. doi: 10.1016/S0140-6736(07)60153-6.
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.