Obesity — Bioenergetics and Metabolism in Pediatric Populations
Citation(s)
Albuali WH Evaluation of oxidant-antioxidant status in overweight and morbidly obese Saudi children. World J Clin Pediatr. 2014 Feb 8;3(1):6-13. doi: 10.5409/wjcp.v3.i1.6. eCollection 2014 Feb 8.
Bervoets L, Massa G Classification and clinical characterization of metabolically "healthy" obese children and adolescents. J Pediatr Endocrinol Metab. 2016 May 1;29(5):553-60. doi: 10.1515/jpem-2015-0395.
Codoner-Franch P, Pons-Morales S, Boix-Garcia L, Valls-Belles V Oxidant/antioxidant status in obese children compared to pediatric patients with type 1 diabetes mellitus. Pediatr Diabetes. 2010 Jun;11(4):251-7. doi: 10.1111/j.1399-5448.2009.00565.x. Epub 2009 Sep 16.
Hesselink MK, Schrauwen-Hinderling V, Schrauwen P Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol. 2016 Nov;12(11):633-645. doi: 10.1038/nrendo.2016.104. Epub 2016 Jul 22.
Kelley DE, Goodpaster B, Wing RR, Simoneau JA Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999 Dec;277(6):E1130-41. doi: 10.1152/ajpendo.1999.277.6.E1130.
Kelley DE, He J, Menshikova EV, Ritov VB Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002 Oct;51(10):2944-50. doi: 10.2337/diabetes.51.10.2944.
Marin MT, Dasari PS, Tryggestad JB, Aston CE, Teague AM, Short KR Oxidized HDL and LDL in adolescents with type 2 diabetes compared to normal weight and obese peers. J Diabetes Complications. 2015 Jul;29(5):679-85. doi: 10.1016/j.jdiacomp.2015.03.015. Epub 2015 Apr 6.
Patti ME, Corvera S The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev. 2010 Jun;31(3):364-95. doi: 10.1210/er.2009-0027. Epub 2010 Feb 15.
Simoneau JA, Bouchard C Skeletal muscle metabolism and body fat content in men and women. Obes Res. 1995 Jan;3(1):23-9. doi: 10.1002/j.1550-8528.1995.tb00117.x.
Simoneau JA, Colberg SR, Thaete FL, Kelley DE Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. FASEB J. 1995 Feb;9(2):273-8.
Simoneau JA, Kelley DE, Neverova M, Warden CH Overexpression of muscle uncoupling protein 2 content in human obesity associates with reduced skeletal muscle lipid utilization. FASEB J. 1998 Dec;12(15):1739-45. doi: 10.1096/fasebj.12.15.1739.
Simoneau JA, Kelley DE Altered glycolytic and oxidative capacities of skeletal muscle contribute to insulin resistance in NIDDM. J Appl Physiol (1985). 1997 Jul;83(1):166-71. doi: 10.1152/jappl.1997.83.1.166.
Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes. 2002 Jun;51(6):1913-20. doi: 10.2337/diabetes.51.6.1913.
Vehapoglu A, Turkmen S, Goknar N, Ozer OF Reduced antioxidant capacity and increased subclinical inflammation markers in prepubescent obese children and their relationship with nutritional markers and metabolic parameters. Redox Rep. 2016 Nov;21(6):271-80. doi: 10.1080/13510002.2015.1133035. Epub 2016 Feb 19.
Vincent HK, Innes KE, Vincent KR Oxidative stress and potential interventions to reduce oxidative stress in overweight and obesity. Diabetes Obes Metab. 2007 Nov;9(6):813-39. doi: 10.1111/j.1463-1326.2007.00692.x.
Bioenergetics and Metabolism in Pediatric Populations
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.