Motor Skills Disorders — DCD Imaging-Intervention Study
Citation(s)
Langevin LM, Macmaster FP, Crawford S, Lebel C, Dewey D Common white matter microstructure alterations in pediatric motor and attention disorders. J Pediatr. 2014 May;164(5):1157-1164.e1. doi: 10.1016/j.jpeds.2014.01.018. Epub 2014 Feb 25.
Polatajko HJ, Cantin N Developmental coordination disorder (dyspraxia): an overview of the state of the art. Semin Pediatr Neurol. 2005 Dec;12(4):250-8. Review.
Zwicker JG, Missiuna C, Boyd LA Neural correlates of developmental coordination disorder: a review of hypotheses. J Child Neurol. 2009 Oct;24(10):1273-81. doi: 10.1177/0883073809333537. Epub 2009 Aug 17. Review.
Zwicker JG, Missiuna C, Harris SR, Boyd LA Brain activation associated with motor skill practice in children with developmental coordination disorder: an fMRI study. Int J Dev Neurosci. 2011 Apr;29(2):145-52. doi: 10.1016/j.ijdevneu.2010.12.002. Epub 2010 Dec 8.
Zwicker JG, Missiuna C, Harris SR, Boyd LA Brain activation of children with developmental coordination disorder is different than peers. Pediatrics. 2010 Sep;126(3):e678-86. doi: 10.1542/peds.2010-0059. Epub 2010 Aug 16.
Zwicker JG, Missiuna C, Harris SR, Boyd LA Developmental coordination disorder: a pilot diffusion tensor imaging study. Pediatr Neurol. 2012 Mar;46(3):162-7. doi: 10.1016/j.pediatrneurol.2011.12.007.
Developmental Coordination Disorder: Integrating Brain Imaging and Rehabilitation to Improve Outcomes
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.