Ades PA, Grunvald MH Cardiopulmonary exercise testing before and after conditioning in older coronary patients. Am Heart J. 1990 Sep;120(3):585-9. doi: 10.1016/0002-8703(90)90015-p.
Baker JG, Freitas MS, Leddy JJ, Kozlowski KF, Willer BS Return to full functioning after graded exercise assessment and progressive exercise treatment of postconcussion syndrome. Rehabil Res Pract. 2012;2012:705309. doi: 10.1155/2012/705309. Epub 2012 Jan 16.
Clark PJ, Brzezinska WJ, Thomas MW, Ryzhenko NA, Toshkov SA, Rhodes JS Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice. Neuroscience. 2008 Sep 9;155(4):1048-58. doi: 10.1016/j.neuroscience.2008.06.051. Epub 2008 Jul 1.
Cotman CW, Berchtold NC, Christie LA Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007 Sep;30(9):464-72. doi: 10.1016/j.tins.2007.06.011. Epub 2007 Aug 31. Erratum In: Trends Neurosci. 2007 Oct;30(10):489.
Donnelly KZ, Linnea K, Grant DA, Lichtenstein J The feasibility and impact of a yoga pilot programme on the quality-of-life of adults with acquired brain injury. Brain Inj. 2017;31(2):208-214. doi: 10.1080/02699052.2016.1225988. Epub 2016 Dec 12.
Edwards T, Pilutti LA The effect of exercise training in adults with multiple sclerosis with severe mobility disability: A systematic review and future research directions. Mult Scler Relat Disord. 2017 Aug;16:31-39. doi: 10.1016/j.msard.2017.06.003. Epub 2017 Jun 12.
Esselman PC, Uomoto JM Classification of the spectrum of mild traumatic brain injury. Brain Inj. 1995 May-Jun;9(4):417-24. doi: 10.3109/02699059509005782.
Fogelman D, Zafonte R Exercise to enhance neurocognitive function after traumatic brain injury. PM R. 2012 Nov;4(11):908-13. doi: 10.1016/j.pmrj.2012.09.028.
Geneen LJ, Moore RA, Clarke C, Martin D, Colvin LA, Smith BH Physical activity and exercise for chronic pain in adults: an overview of Cochrane Reviews. Cochrane Database Syst Rev. 2017 Apr 24;4(4):CD011279. doi: 10.1002/14651858.CD011279.pub3.
Griesbach GS, Hovda DA, Gomez-Pinilla F Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res. 2009 Sep 8;1288:105-15. doi: 10.1016/j.brainres.2009.06.045. Epub 2009 Jun 23.
Gurley JM, Hujsak BD, Kelly JL Vestibular rehabilitation following mild traumatic brain injury. NeuroRehabilitation. 2013;32(3):519-28. doi: 10.3233/NRE-130874.
Hehar H, Mychasiuk R The use of telomere length as a predictive biomarker for injury prognosis in juvenile rats following a concussion/mild traumatic brain injury. Neurobiol Dis. 2016 Mar;87:11-8. doi: 10.1016/j.nbd.2015.12.007. Epub 2015 Dec 17.
Humphreys I, Wood RL, Phillips CJ, Macey S The costs of traumatic brain injury: a literature review. Clinicoecon Outcomes Res. 2013 Jun 26;5:281-7. doi: 10.2147/CEOR.S44625. Print 2013.
Korley FK, Kelen GD, Jones CM, Diaz-Arrastia R Emergency Department Evaluation of Traumatic Brain Injury in the United States, 2009-2010. J Head Trauma Rehabil. 2016 Nov/Dec;31(6):379-387. doi: 10.1097/HTR.0000000000000187.
Lange RT, Iverson GL, Rose A Depression strongly influences postconcussion symptom reporting following mild traumatic brain injury. J Head Trauma Rehabil. 2011 Mar-Apr;26(2):127-37. doi: 10.1097/HTR.0b013e3181e4622a.
Merritt VC, Arnett PA Apolipoprotein E (APOE) ?4 Allele Is Associated with Increased Symptom Reporting Following Sports Concussion. J Int Neuropsychol Soc. 2016 Jan;22(1):89-94. doi: 10.1017/S1355617715001022. Epub 2015 Oct 20.
Merritt VC, Rabinowitz AR, Arnett PA The Influence of the Apolipoprotein E (APOE) Gene on Subacute Post-Concussion Neurocognitive Performance in College Athletes. Arch Clin Neuropsychol. 2018 Feb 1;33(1):36-46. doi: 10.1093/arclin/acx051.
Molteni R, Zheng JQ, Ying Z, Gomez-Pinilla F, Twiss JL Voluntary exercise increases axonal regeneration from sensory neurons. Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8473-8. doi: 10.1073/pnas.0401443101. Epub 2004 May 24.
Mychasiuk R, Hehar H, Ma I, Candy S, Esser MJ Reducing the time interval between concussion and voluntary exercise restores motor impairment, short-term memory, and alterations to gene expression. Eur J Neurosci. 2016 Oct;44(7):2407-2417. doi: 10.1111/ejn.13360. Epub 2016 Aug 31.
Olesen J, Leonardi M The burden of brain diseases in Europe. Eur J Neurol. 2003 Sep;10(5):471-7. doi: 10.1046/j.1468-1331.2003.00682.x.
Polak P, Leddy JJ, Dwyer MG, Willer B, Zivadinov R Diffusion tensor imaging alterations in patients with postconcussion syndrome undergoing exercise treatment: a pilot longitudinal study. J Head Trauma Rehabil. 2015 Mar-Apr;30(2):E32-42. doi: 10.1097/HTR.0000000000000037.
Stroth S, Hille K, Spitzer M, Reinhardt R Aerobic endurance exercise benefits memory and affect in young adults. Neuropsychol Rehabil. 2009 Apr;19(2):223-43. doi: 10.1080/09602010802091183. Epub 2008 Jun 1.
Wogensen E, Mala H, Mogensen J The Effects of Exercise on Cognitive Recovery after Acquired Brain Injury in Animal Models: A Systematic Review. Neural Plast. 2015;2015:830871. doi: 10.1155/2015/830871. Epub 2015 Oct 5.
Zhang QW, Deng XX, Sun X, Xu JX, Sun FY Exercise promotes axon regeneration of newborn striatonigral and corticonigral projection neurons in rats after ischemic stroke. PLoS One. 2013 Nov 19;8(11):e80139. doi: 10.1371/journal.pone.0080139. eCollection 2013.
Improving Symptom Burden in Individuals With Persistent Post Concussive Symptoms: A Step-wise Aerobic Exercise Trial
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.