Malocclusion — OrthoPulse 2.0 and 2.1 Feasibility Evaluation
Citation(s)
Arany PR Craniofacial Wound Healing with Photobiomodulation Therapy: New Insights and Current Challenges. J Dent Res. 2016 Aug;95(9):977-84. doi: 10.1177/0022034516648939. Epub 2016 May 9. Review.
Cruz DR, Kohara EK, Ribeiro MS, Wetter NU Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: a preliminary study. Lasers Surg Med. 2004;35(2):117-20.
Dickerson TE Invisalign with Photobiomodulation: Optimizing Tooth Movement and Treatment Efficacy with a Novel Self-Assessment Algorithm. J Clin Orthod. 2017 Mar;51(3):157-165.
Doshi-Mehta G, Bhad-Patil WA Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: a clinical investigation. Am J Orthod Dentofacial Orthop. 2012 Mar;141(3):289-297. doi: 10.1016/j.ajodo.2011.09.009.
Ekizer A, Uysal T, Güray E, Akkus D Effect of LED-mediated-photobiomodulation therapy on orthodontic tooth movement and root resorption in rats. Lasers Med Sci. 2015 Feb;30(2):779-85. doi: 10.1007/s10103-013-1405-3. Epub 2013 Aug 29.
Ekizer A, Uysal T, Güray E, Yüksel Y Light-emitting diode photobiomodulation: effect on bone formation in orthopedically expanded suture in rats--early bone changes. Lasers Med Sci. 2013 Sep;28(5):1263-70. doi: 10.1007/s10103-012-1214-0. Epub 2012 Nov 9.
El-Bialy T, Alhadlaq A, Felemban N, Yeung J, Ebrahim A, Hassan AH The effect of light-emitting diode and laser on mandibular growth in rats. Angle Orthod. 2015 Mar;85(2):233-8. doi: 10.2319/030914-170.1. Epub 2014 Jul 14. Erratum in: Angle Orthod. 2016 Jan;86(1):177.
Masha RT, Houreld NN, Abrahamse H Low-intensity laser irradiation at 660 nm stimulates transcription of genes involved in the electron transport chain. Photomed Laser Surg. 2013 Feb;31(2):47-53. doi: 10.1089/pho.2012.3369. Epub 2012 Dec 16.
Nimeri G, Kau CH, Corona R, Shelly J The effect of photobiomodulation on root resorption during orthodontic treatment. Clin Cosmet Investig Dent. 2014 Jan 15;6:1-8. doi: 10.2147/CCIDE.S49489. eCollection 2014.
Ojima K, Dan C, Kumagai Y, Schupp W Invisalign Treatment Accelerated by Photobiomodulation. J Clin Orthod. 2016 May;50(5):309-17; quiz 319-20.
Oron U, Ilic S, De Taboada L, Streeter J Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg. 2007 Jun;25(3):180-2.
Saito S, Shimizu N Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofacial Orthop. 1997 May;111(5):525-32.
Silveira PC, Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009 May 4;95(2):89-92. doi: 10.1016/j.jphotobiol.2009.01.004. Epub 2009 Jan 21.
Sun X, Zhu X, Xu C, Ye N, Zhu H [Effects of low energy laser on tooth movement and remodeling of alveolar bone in rabbits]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2001 Oct;19(5):290-3. Chinese.
Uysal T, Ekizer A, Akcay H, Etoz O, Guray E Resonance frequency analysis of orthodontic miniscrews subjected to light-emitting diode photobiomodulation therapy. Eur J Orthod. 2012 Feb;34(1):44-51. doi: 10.1093/ejo/cjq166. Epub 2010 Dec 27.
Yamaguchi M, Hayashi M, Fujita S, Yoshida T, Utsunomiya T, Yamamoto H, Kasai K Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. Eur J Orthod. 2010 Apr;32(2):131-9. doi: 10.1093/ejo/cjp078. Epub 2010 Feb 16.
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.