Chen W, Lee Z, Awadallah A, Zhou L, Xin W Peritumoral/vascular expression of PSMA as a diagnostic marker in hepatic lesions. Diagn Pathol. 2020 Jul 23;15(1):92. doi: 10.1186/s13000-020-00982-4.
Chen X, Xiao E, Shu D, Yang C, Liang B, He Z, Bian D Evaluating the therapeutic effect of hepatocellular carcinoma treated with transcatheter arterial chemoembolization by magnetic resonance perfusion imaging. Eur J Gastroenterol Hepatol. 2014 Jan;26(1):109-13. doi: 10.1097/MEG.0b013e328363716e.
Choi JW, Chung JW, Lee DH, Kim HC, Hur S, Lee M, Jae HJ Portal hypertension is associated with poor outcome of transarterial chemoembolization in patients with hepatocellular carcinoma. Eur Radiol. 2018 May;28(5):2184-2193. doi: 10.1007/s00330-017-5145-9. Epub 2017 Dec 7.
Choi SH, Kim SY, Park SH, Kim KW, Lee JY, Lee SS, Lee MG Diagnostic performance of CT, gadoxetate disodium-enhanced MRI, and PET/CT for the diagnosis of colorectal liver metastasis: Systematic review and meta-analysis. J Magn Reson Imaging. 2018 May;47(5):1237-1250. doi: 10.1002/jmri.25852. Epub 2017 Sep 13.
Gourtsoyianni S, Santinha J, Matos C, Papanikolaou N Diffusion-weighted imaging and texture analysis: current role for diffuse liver disease. Abdom Radiol (NY). 2020 Nov;45(11):3523-3531. doi: 10.1007/s00261-020-02772-4. Epub 2020 Oct 16.
Hennrich U, Eder M [68Ga]Ga-PSMA-11: The First FDA-Approved 68Ga-Radiopharmaceutical for PET Imaging of Prostate Cancer. Pharmaceuticals (Basel). 2021 Jul 23;14(8):713. doi: 10.3390/ph14080713.
Jajamovich GH, Calcagno C, Dyvorne HA, Rusinek H, Taouli B DCE-MRI of the liver: reconstruction of the arterial input function using a low dose pre-bolus contrast injection. PLoS One. 2014 Dec 29;9(12):e115667. doi: 10.1371/journal.pone.0115667. eCollection 2014.
Keller EJ, Collins JD, Rigsby C, Carr JC, Markl M, Schnell S Superior Abdominal 4D Flow MRI Data Consistency with Adjusted Preprocessing Workflow and Noncontrast Acquisitions. Acad Radiol. 2017 Mar;24(3):350-358. doi: 10.1016/j.acra.2016.10.007. Epub 2016 Dec 8.
La Villa G, Gentilini P Hemodynamic alterations in liver cirrhosis. Mol Aspects Med. 2008 Feb-Apr;29(1-2):112-8. doi: 10.1016/j.mam.2007.09.010. Epub 2007 Oct 24.
Lee KH, Sung KB, Lee DY, Park SJ, Kim KW, Yu JS Transcatheter arterial chemoembolization for hepatocellular carcinoma: anatomic and hemodynamic considerations in the hepatic artery and portal vein. Radiographics. 2002 Sep-Oct;22(5):1077-91. doi: 10.1148/radiographics.22.5.g02se191077.
McGregor H, Brunson C, Woodhead G, Khan A, Hennemeyer C, Patel M Quantitative Assessment of the Hemodynamic Effects of Intra-Arterial Nitroglycerin on Hepatocellular Carcinoma using Two-Dimensional Perfusion Angiography. J Vasc Interv Radiol. 2021 Feb;32(2):198-203. doi: 10.1016/j.jvir.2020.10.023. Epub 2020 Dec 3.
Moon AM, Singal AG, Tapper EB Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin Gastroenterol Hepatol. 2020 Nov;18(12):2650-2666. doi: 10.1016/j.cgh.2019.07.060. Epub 2019 Aug 8.
Ng CS, Raunig DL, Jackson EF, Ashton EA, Kelcz F, Kim KB, Kurzrock R, McShane TM Reproducibility of perfusion parameters in dynamic contrast-enhanced MRI of lung and liver tumors: effect on estimates of patient sample size in clinical trials and on individual patient responses. AJR Am J Roentgenol. 2010 Feb;194(2):W134-40. doi: 10.2214/AJR.09.3116.
Tian H, Wang Q Quantitative analysis of microcirculation blood perfusion in patients with hepatocellular carcinoma before and after transcatheter arterial chemoembolisation using contrast-enhanced ultrasound. Eur J Cancer. 2016 Nov;68:82-89. doi: 10.1016/j.ejca.2016.08.016. Epub 2016 Oct 10.
Wm T, L S, C K, K E, T H, H B, T K, K N, M H, S K Quantification of Hemodynamic Changes in Chronic Liver Disease: Correlation of Perfusion-CT Data with Histopathologic Staging of Fibrosis. Acad Radiol. 2019 Sep;26(9):1174-1180. doi: 10.1016/j.acra.2018.11.009. Epub 2018 Dec 6.
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease.
Observational studies are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods.
Expanded access is a means by which manufacturers make investigational new drugs available, under certain circumstances, to treat a patient(s) with a serious disease or condition who cannot participate in a controlled clinical trial.
Clinical trials are conducted in a series of steps, called phases - each phase is designed to answer a separate research question.
Phase 1: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.
Phase 2: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.
Phase 3: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.
Phase 4: Studies are done after the drug or treatment has been marketed to gather information on the drug's effect in various populations and any side effects associated with long-term use.